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The objective of this work is to make a comparative study of the Marriage in Honeybees Op-
timization (MBO) metaheuristic for flow-shop scheduling problems. This paper is focused on 
the design possibilities of the mating flight space shared by queens and drones. The proposed 
algorithm uses a 2-dimensional torus as an explicit mating space instead of the simulated an-
nealing one in the original MBO. After testing different alternatives with benchmark datasets, 
the results show that the modeled and implemented metaheuristic is effective to solve flow-
shop type problems, providing a new approach to solve other NP-Hard problems. 
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Introduction 
Evolutionary computation refers to the set 

of methods that have a biological inspiration 
and allow solving complex problems. These 
methods are based on the principle that evo-
lution is an optimization process in which it 
is attempted to improve the skills of individ-
uals and therefore achieve better adaptation 
to their environment as a result of greater 
overall survival. In particular, Swarm Intelli-
gence (SI) is an area of artificial intelligence 
focused on modeling the behavior of social 
insects like ants and bees [1]. Ant Colony 
Optimization (ACO) is one of the better 
known models of the SI type in which the de-
sign of optimization algorithms is inspired by 
the decentralized and collective behavior of 
ant colonies [2], [3]. Another metaheuristic 
of the SI type is Marriage in Honeybees Op-
timization (MBO), which is inspired by the 
mating flight of honey-making bees, and was 
proposed by Abbass [4-6] to apply it to the 

SAT problem, which is an NP-Complete 
problem. The purpose of this work is to test 
the efficiency of the MBO metaheuristic in 
the permutational flow shop problem and 
compare the results between the different de-
sign alternatives of the mating flight space. 
 
1.1 Marriage in Honey-Bees Optimization 
The main stages of the MBO algorithm are:  
• The mating flights of the queens with the 

drones to choose the parents of the future 
larvae. 

• Creation of new offspring by the queens, 
which correspond to the crossing of genet-
ic material from the queen bee with the 
drones chosen in the mating flight. 

• Improvement of the health quality of the 
offspring by the workers by mutation. 

A schematic diagram is presented on Figure 
1. 
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Fig. 1. Graphic representation of the MBO technique 

 
The key stage of the metaheuristic is the mat-
ing flight of the queens with the drones, be-
cause in this stage the queen can choose to 
mate with a drone depending on the quality 
of the drone found. The queen stores the ge-
netic material of the chosen drones in its 
spermatheca. As the flight takes place, the 
queen loses energy and speed. The process 
ends when the queen uses up the available 
energy or fills its spermatheca to capacity. 
The loss of speed affects the queen’s ability 
to choose the drones; at first the queen’s 
movements are long and allow it to choose 
among a large number of drones. As the 
queen’s speed decreases, its movements be-
come shorter, so it can only choose the 
drones that are closest, within the range de-
fined by its speed. 
The energy of a queen at the beginning of a 
flight is represented by E0, 0<E0≤1, and it is 
chosen uniformly for each queen, E0 ~ 
U(0,1). Depending on the selection of pa-
rameters proposed in[5, 6], this choice en-
sures 7 to 17 matings per flight. In this im-
plementation of the MBO algorithm the 

queen bee moves in the flight space accord-
ing to a random walk with decreasing steps. 
The drones, on the other hand, will generate 
their trajectories according to a scheme in-
herited from Particle Swarm Optimization 
(PSO)[7], using individual and social factors 
at each step. The updating of the position x 
and speed v of each drone is defined by: 
 
xk+1 = xk+vk+1 (1) 
vk+1 = φ0vk+φ1(p1−xk)+φ2(p2−xk) (2) 
 
Where φi>0, i∈{0,1,2}, φ0 is the importance 
factor of speed, φ1 is the importance factor of 
the individuals drones best position, p1, and 
φ2 is the importance factor of the best drone’s 
best position, p2. If φ1>φ2, more importance 
is assigned to individual learning, in refer-
ence to the best position found by the drone 
itself. On the other hand, if φ2>φ1, more im-
portance is assigned to the learning of the 
swarm, in reference to the best position 
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found by the set of drones. Every time a 
queen chooses a drone for a possible cross-
ing, the probability that the queen will store 
the drone’s genetic material in its 
spermatheca is given by: 
 
P(q,d) = min{exp(-Δf/S),1} (3) 
 
Where ∆f is the absolute difference between 
the fitness of the drone d and queen q, and S 
is the speed of the queen. The probability of 
mating is high when the distance between 
theirs fitness is short or when the queen’s 
speed is high. After each transition state, the 
queen’s energy and speed are updated ac-
cording to the following equations: 
 
Ek+1 = gEk (4) 
Sk+1 = (1−a)Sk (5) 
 
Where the initial speed S0 of the queen is 
chosen uniformly, S0 ~ U(0,1), and 0<a<1 is 
the speed reduction parameter. E is the 
queen’s energy, and g is the energy reduction 
factor after each transition, defined by:  
 
g = 1–1/(2M) (6) 
 
Where M is the maximum capacity of the 
queen bee’s spermatheca.  
The mating flight ends when the queen uses 
up all its energy, E=0, or when its 
spermatheca reaches its maximum available 
capacity M. As seen in (4), a cutoff value 
0<Emin<0.5 must be chosen to represent the 
final value of the queen’s energy: 
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When the queen ends its flight, the larva gen-
eration process begins. The drones’ sperm is 
chosen randomly from the spermatheca and a 
larva is created by crossing genetic material, 
using half of the queen bee’s genetic infor-
mation and completing the rest with the 
drone’s genotype. The following phase is 
larva mutation and the improvement of the 

quality of the larvae by the worker bees. The 
worker bees are represented by local search 
algorithms or simple heuristics that allow the 
search for solutions in a reduced domain in a 
reasonable time. Finally, the lower quality 
queen bees will be replaced by the larvae that 
represent better solutions than the present 
queens. The remaining larvae are eliminated. 
With the updated set of queens a new flight 
can be executed. The process ends when a 
pre-established maximum number of flights 
are reached or when some other termination 
condition is reached. 
 
2 Flow-Shop Modeling for MBO 
Permutation flow-shop represents a particular 
case of the flow-shop scheduling problem, 
having as goal the deployment of an optimal 
schedule for n jobs on m machines. Solving 
the flow-shop problem consists in scheduling 
n jobs (i=1…n) on m machines ( j=1…m). A 
job consists of m operations, and the jth oper-
ation of each job must be processed on ma-
chine j. So one job can start on machine j if it 
is completed on machine j1 and if machine j 
is free. Each operation has a known pro-
cessing time jip , . As a consequence for the 
permutation flow-shop problem considering 
the makespan as target function to be mini-
mized, to solve the problem means determin-
ing the permutation that gives the smallest 
makespan value.  
Makespan ),(max mJ n

CC =  is the termination 
time for n works on m machines, and it is 
calculated with the recursive formula: 
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where:  
• ),( kJ i

C : Time for finishing task Ji on ma-
chine k.  

• },,{ 1 nJJ  : Permutation of n tasks.  
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• ),( kJ i
t : Time for processing task Ji on ma-
chine k.  

• n : Number of tasks.  
• m : Number of machines.  
To be able to represent the problem from the 
MBO perspective, the following steps were 
taken: 
 
2.1 Structure 
First, the genotypes of the drones, the 
queens, and the larvae must be established. 
Each of these genotypes will be represented 
by a permutational sequence of works of the 
same length for all the individuals that will 
depend on the number of tasks existing in 
each problem. For example, Fig. 2 depicts 
representations of a queen, a drone and a lar-
va when eight jobs are available. 
 

 
Fig. 2. Structure of the individuals' genotype 

 
2.2 Population 
A queen bee population is generated, the best 
of which is the one obtained by means of 
Palmer’s Heuristic. The rest of the queen 
bees will be obtained by a random procedure, 
to generate more diversity. The drone popu-
lation will be obtained by a random proce-
dure in which the tasks that make up their se-
quence are assigned in such a way that each 
drone generated is feasible. Also, the drones 
cannot have the same genetic material, i.e., in 
different flights different drones will be cre-
ated, with the purpose of increasing the ex-
ploration of permutations. 
 
2.3  Trajectory generation 
To be able to generate the trajectories of the 
queens and the drones they must first be po-
sitioned randomly in the n-dimensional 
space, i.e., initial positions will be created by 
chance for each individual. This stage will be 
divided into two: one corresponding to the 
queen bee transition and the other to the 

drones. The queen bees will move randomly 
over a limited neighborhood, and the drones 
according to (1) and (2). 
 
2.4 Drone selection 
As already mentioned, the trajectories of the 
queen bees will depend on chance. Once that 
has happened, the probability that the drones 
have of mating with a queen bee is calculated 
(3)-(5). Once the probability of mating with a 
particular drone is obtained, the queen bee 
chooses randomly if it will open its 
spermatheca to the chosen drone. For that it 
will generate a number (W) between 0 and 1 
that will represent the queen bee’s decision. 
If that number is smaller than the drone’s 
mating probability, the queen will open its 
spermatheca to allow the entry of the drone’s 
sperm. This happens because the queen’s 
predisposition to mate is greater than the 
probability of the drone, so the queen’s deci-
sion will be to mate with it. 
 
2.5 Genetic crossing 
Once the drone selection has been made, the 
next step is processing that information, or 
the genetic step, which has two operators, de-
fined as order crossing and mutation. The 
crossing used is that proposed by Davis [8], 
called OX. In Fig. 3, five jobs are used to de-
scribe a crossover between queen Q1 and 
drone D1 to produce two larvae.  

 

 

 
Fig. 3. OX crossing between queen bee and 

drone 
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Mutation involves the random alteration of 
each component in the sequence of jobs. The 
mutation used is illustrated in Fig. 4. 
 

 
Fig. 4. Mutation for a larva 

 
The mutation is triggered as follows: A ran-
dom number between 0 and 1 is generated 
for each larva and it is compared with its mu-
tation probablility; if this number is smaller 
than the mutation probability, the larva mu-
tates. Otherwise the larva’s genotype remains 
intact. 
 
2.6 Evaluation of the queen and the larva 
The evaluation function must determine if an 
individual is apt or not, in the configuration 
space, by means of a cost associated with it. 
This mode of implementation seeks to obtain 
the best makespan for each individual.  
 
2.7 Updating population 

This procedure considers replacing the least 
adapted queen bees by the best larvae ob-
tained from the crossing of a queen bee and a 
selected drone.  
 
2.8 Updating parameters 
In each of their flights the queen bees loose 
energy and speed, and they may accept some 
drone for mating, which implies that they 
will have less space in their spermatheca to 
accept another mating. That is why the pa-
rameters must be updated in each flight.  
 
2.9 Stopping criteria 
When the heuristic is iterated, it will always 
voraciously reduce the target function. In 
view of that, the criterion for making a more 
exhaustive study of the efficiency of the 
MBO algorithm is the definition of a certain 
number of flights (iterations) initialized and 
entered at the start of the program. In this 
case the stopping criterion was 1000 itera-
tions. 
Finally, Table 1 summarizes the values of the 
metaheuristic’s parameters for the flow-shop 
problem. It should be noted that some were 
obtained empirically and others were taken 
from the literature. 

 
Table 1. Parameters for MBO Implementation 

Parameters Source Value 
Number of queens Experiment 3 
Drone population Experiment 100 
Capacity of spermatheca (M) Experiment 100 
Initial speed of queens (S0) Experiment 10 
Initial energy of queens (E0) Literature [6] U(0,1) 
Energy reduction factor for queens (g) Literature [6] 0.1 

 
3 Proposed variants for the MBO 
metaheuristic 
The original MBO algorithm is a hybrid 
metaheuristic of simulated annealing (SA), 
genetic algorithms (GA), and local search 
(LS), in view of the use of a mating function 
similar to SA, and the advantages of GA and 
LS in the generation and improvement of the 
larvae by the worker bees. However, the 
MBO metaheuristic has a large number of 

particular characteristics that distinguish it 
from the rest[4-6]. 
As described previously, the main MBO pro-
cesses are the following:  
• Mating in flight of the queen bee with the 

drones.  
• Creation of new queen bee larva.  
• Larvae improvement by the workers.  
• Replacement of the less apt queens by the 

best larva.  
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The key process of interest for the present 
work is the flight mating process of the 
queen bee where the drones are. With the 
purpose of improving the pure MBO algo-
rithm, we will use the PSO model[7] in a 
toroidal space to select apt drones in each 
swarm for mating with the queens. 
All the remaining processes will be kept con-
stant and as defined in the MBO developed 
by Abbas[5, 6]. Given the logic of the PSO 
algorithm, the creation space of the mating 
flight is defined as an n-dimensional space, 
and as a way of interfering as little as possi-
ble with the drone generation space we will 
use a toroidal space.  
The surface of the 2-dimensional torus used 
as flight space. In the torus, the coordinates 

),( TT yx  follow:  










T

T

y
x

 = 







)(mod
)(mod

y

x

ny
nx

 (9) 

Where nx and ny are the length of each coor-
dinate axis and (x,y) are the coordinates of 
the Euclidean space. 
In PSO the drones fly through the problem’s 
space, where each one keeps a record of its 
coordinates in the problem’s space that are 
associated with the best solution that it has 
achieved so far. Each drone will be repre-
sented as a vector that is updated at each cy-
cle. Therefore, each position of the drones 

will be represented by a tuple ),( TT yx  in the 
torus. The size of this space will be given ar-
bitrarily by the experiments made, and will 
depend on the size of the population to be 
generated. In this case the population was set 
at 100 drones and the space used was of the 
order of )100,100(),( =yx nn . The distance 
between two points in the torus was calculat-
ed by the following formula: 

),( vud  = 2
1

)( yx ∆+∆  (10) 
Where (∆x ,∆y) represents the shortest path 
between one point and another for each axis: 

},min{ xxxxxx vunvu −−−=∆  (11) 

},min{ yyyyyy vunvu −−−=∆  (12) 
 
4 Experimental Results 
The computational development for testing 
the proposed heuristic was made on a com-
puter with an AMD Athlon 64 3000+ proces-
sor, clock speed of 2.0 GHz, 1 GB RAM, 
with Linux, programmed in Python. The in-
stances used were extracted from the data 
base available in the OR-Library[9], where 
120 Taillard’s instances [10] were consid-
ered, grouped as shown in Table 2, where 
each configuration has 10 test instances.  

 
Table 2. Characteristics of used instances 

Configuration Tasks Machines Instances 
 (N) (M)  

1 20 5 ta001-010 
2 20 10 ta011-020 
3 20 20 ta021-030 
4 50 5 ta031-040 
5 50 10 ta041-050 
6 50 20 ta051-060 
7 100 5 ta061-070 
8 100 10 ta071-080 
9 100 20 ta081-090 

10 200 10 ta091-100 
11 200 20 ta101-110 
12 500 20 ta111-120 

 
The results obtained for each configuration 
evaluated are presented in Table 3, where the 
first column gives the number of the configu-

ration; the second gives the number tasks; the 
third gives the number of machines; and the 
fourth gives the mean error of the original 
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MBO metaheuristic measured as percentage 
of the best solution found and the best solu-
tion from the data base, divided by the latter; 
the fifth gives the mean efficiency of the 
modified MBO metaheuristic, measured as 
percentage of the best solution found and the 
best solution from the data base, divided by 
the latter; and the sixth gives the difference 
between the original MBO metaheuristic and 
the proposed modified MBO metaheuristic. 

In Table 3 it is seen that the overall average 
error for the 120 test instances is 4.93% for 
the original MBO metaheuristic and 3.19% 
for the modified MBO metaheuristic, com-
pared with the best solution given in the OR-
Libray database. These results are considered 
satisfactory for the proposed metaheuristic, 
since there are significant differences be-
tween the two metaheuristics studied. 

 
Table 3. Results  

Configuration Tasks 
(N) 

Machines 
(M) 

Mean 
error 

Mean efficien-
cy 

Difference 
 

1 20 5 3.6 1.4 -2.2 
2 20 10 4.8 2.5 -2.3 
3 20 20 4.7 2.3 -2.4 
4 50 5 3.3 0.9 -2.4 
5 50 10 7.3 4.4 -2.8 
6 50 20 9.1 6.2 -2.9 
7 100 5 2.3 0.8 -1.4 
8 100 10 4.6 2.7 -1.9 
9 100 20 9.1 6.6 -2.5 

10 200 10 4.1 2.3 -1.8 
11 200 20 8.9 6.6 -2.3 
12 500 20 6.3 5.0 -1.3 

Mean 4.93 3.19 -1.75 
Max 9.1 6.6  
Min 3.6 0.8  

 
5 Conclusion 
The main contribution of this work is the 
proposal of a new metaheuristic based on 
honeybee mating, proposed by Abbass [4-6] 
to tackle a scheduling problem of the flow 
shop type, achieving very good results for the 
120 tested instances. Also, a first application 
of the MBO technique to the scheduling 
problem of the combinatorial flow-shop type 
is presented. However, the proposed MBO 
metaheuristic is a first approximation, so fu-
ture work may take two routes: (1) Test the 
efficiency of the metaheuristic in other types 
of combinatorial problems like that of the 
traveling salesman, among others, and (2) 
study other larva improvement techniques 
and carry out a parameterization study, in 
view of the large number of parameters used 
by this technique.  
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