
132   Informatica Economică vol. 16, no. 1/2012 

 

Building Database-Powered Mobile Applications 
 

Paul POCATILU 

Bucharest University of Economic Studies 

ppaul@ase.ro 

 

Almost all mobile applications use persistency for their data. A common way for complex 

mobile applications is to store data in local relational databases. Almost all major mobile 

platforms include a relational database engine. These databases engines expose specific API 

(Application Programming Interface) to be used by mobile applications developers for data 

definition and manipulation. This paper focus on database-based application models for 

several mobile platforms (Android, Symbian, Windows CE/Mobile and Windows Phone). For 

each selected platform the API and specific database operations are presented. 

Keywords: Mobile Application, Data Persistence, Embedded Database, SQL, Mobile 

Platform 

 

Introduction 

The use of mobile databases is present in 

numerous mobile applications from different 

areas: productivity, m-learning, games etc. 

Almost all mobile platforms include a 

relational database engine. These database 

engines are embedded into platform and are 

used by built in applications also (contacts, 

calendar, messaging etc.).  

As it can be seen from Table 1, all major 

mobile operating systems include the API for 

database operations. The developers can 

access de databases using database engine 

native API or using wrapper libraries. 

 

Table 1. Example of database management 

engines embedded on mobile platforms 

Platform Mobile database API  

Android SQLite Java 

iOS SQLite C/C++ 

Symbian SQLite C++ 

Windows 

CE/Windows 

Embedded 

Compact/ 

Windows 

Mobile 

EDB C/C++ 

SQL Server CE/ 

Compact 

C/C# 

Windows 

Phone 

SQL Server 

Compact 

C# 

 

One of the most common database engine 

found on mobile devices is SQLite. SQLite 

makes available to the majority of existing 

functions in the management of relational 

databases. Data types supported by SQLite 

are INTEGER, REAL, TEXT and BLOB. 

Unlike other management systems databases, 

SQLite does not generate errors when a value 

has a data type different from associated 

column data type. Instead, the value is 

converted based on affinity types. SQLite 

does not support certain types of association 

(join), referential restriction and nested 

transactions. 

EDB and SQL Server CE/Compact 

Edition/Compact are proprietary solutions 

developed by Microsoft available on mobile 

devices. Depending on implementation and 

version, there are APIs available for C/C++, 

C#, LINQ etc.  

An EDB database consists of volumes stored 

as files. Each volume contains one or more 

databases. Databases contain records; each 

record is characterized by a set of attributes 

(properties). 

SQL Server Compact is part of Microsoft's 

SQL Server family. 

The objective of this paper is to present 

several embedded database engine APIs used 

in mobile applications development. 

 

2 Android 

Android uses SQLite database management 

system [1], [5]. For database operations are 

available classes SQLiteOpenHelper, 

SQLiteDatabase and Cursor. 

To create a new database it is used a class 

derived from SQLiteOpenHelper abstract 

1 



Informatica Economică vol. 16, no. 1/2012   133 

 

class. There are two methods that need to be 

implemented: onCreate() and onUpgrade(): 

 void onCreate(SQLiteDatabase bd) is 

called to create the database; the function 

body contains the code to create tables 

and other database objects (VIEW, 

TRIGGER etc.); 

 void onUpgrade(SQLiteDatabase db, 

int olVers, int newVers) - is called when 

the database structure is modified (tables 

and other database objects). 

The SQLiteDatabase class implements 

database operations. An instance of 

SQLiteDatabase is obtained by calling 

getWritableDatabase() or 

getReadableDatabase() methods, available 

SQLiteOpenHelper class and all classes 

derived from it: 

 
SQLiteDatabase bd = 

accesBD.getReadableDatabase(); 

 

SQLiteDatabase class exposes methods that 

allow direct execution of SQL commands. 

execSQL() is used for commands that don't 

return data (CREATE, INSERT etc.) and 

rawQuery() is used for SQL commands that 

return data as a Cursor (SELECT). 

Databases created by an Android application 

are accessible only to that application. To 

access by other applications content 

providers are used. The following example is 

used to create a database with a single table:

 
 

public class AccesBD extends SQLiteOpenHelper { 

  //table name 

  public static String TABELA_INTILNIRI = "Intilniri"; 

  //table creating script 

  public static String CREARE_TABELA_INTILNIRI = "CREATE TABLE " + 

TABELA_INTILNIRI +"  (id INTEGER PRIMARY KEY AUTOINCREMENT, data INTEGER, subiect 

TEXT,  loc TEXT)"; 

  //database name 

  protected static String BAZA_DE_DATE = "pdm.db"; 

   

  public AccesBD(Context context){ 

 super(context, BAZA_DE_DATE, null, 1); 

  } 

  

  @Override 

  public void onCreate(SQLiteDatabase bd) { 

  bd.execSQL(CREARE_TABELA_INTILNIRI); 

  } 

 

  @Override 

  //is called when database structure changes  

  public void onUpgrade(SQLiteDatabase bd, int versAnt, int verNoua) { 

  bd.execSQL("DROP TABLE IF EXISTS " + TABELA_INTILNIRI); 

  onCreate(bd); 

  } 

} 

 

Also in the class SQLiteDatabase includes 

specialized methods for: 

 adding records: insert(); 

 deleting records: delete(); 

 changing records: update(); 

 data queries: query(). 

The next listing shows a part of BDIntilniri 

class that implements methods for data 

manipulation (insert, update, delete and 

query). The Intilniri class includes the fields: 

id, data, loc and subiect and corresponding 

getter and setters methods.

 
class BDIntilniri 

{ 

  AccesBD accesBD; 

  protected static final String COL_ID = "id"; 

  protected static final String COL_DATA = "data"; 

  protected static final String COL_SUBIECT = "subiect"; 



134   Informatica Economică vol. 16, no. 1/2012 

 

  protected static final String COL_LOC = "loc"; 

  

  BDIntilniri(Context context) 

  { 

  accesBD = new AccesBD(context); 

  } 

  // 

  //inserts an appointment in the table 

  long adaugaInregistrare(Intilnire intilnire) 

  { 

 SQLiteDatabase bd = null; 

 long rezInsert = 0; 

 ContentValues valori = new ContentValues(); 

   

 try 

 { 

  bd = accesBD.getWritableDatabase(); 

    

  valori.put(COL_DATA, intilnire.getData()); 

  valori.put(COL_SUBIECT, intilnire.getSubiect()); 

  valori.put(COL_LOC, intilnire.getLoc()); 

   

  rezInsert = bd.insert(AccesBD.TABELA_INTILNIRI,  null, valori); 

 } 

 catch(SQLException ex) 

 { ex.printStackTrace();} 

   

 return rezInsert; 

  } 

 

//... 

} 

 

The usage of BDIntilniri class is presented in the following example:

 
AccesBD bdA = new AccesBD(this); 

BDIntilniri bd = new BDIntilniri(this); 

 

//current date and time         

Calendar c = Calendar.getInstance(); 

         

//insert a new record   

bd.adaugaInregistrare(new Intilnire(1, c.getTimeInMillis() + 3600000 , "Curs 1", 

"2204")); 

 

When using dedicated methods for database 

operations, if the WHERE clause is present, 

the corresponding parameter is initialized 

properly without its corresponding 

keyword. Instead of values it can be used 

question marks (?) that are replaced with 

corresponding String value from the 

following parameter (an array of strings). 

Data query results are found in an object that 

implements Cursor interface. Records are 

managed through its results. Interface 

exposes methods to browse records (move(), 

moveToFirst(), moveToLast(), 

moveToNext(), moveToPrevious(), 

moveToPosition()) and to obtain the value 

of any field in the current record type 

methods getTYPE(), based on column index, 

depending on data type. 

The next example presents record selection 

and processing using the WHERE clause 

arguments. 

 
String [] paramWhere = new String[]{"2204"}; 

String cond = COL_LOC + "=?"; 

String orderBy = COL_DATA + " ASC"; 

 

String [] paramWhere = new String[]{"2204"}; 



Informatica Economică vol. 16, no. 1/2012   135 

 

String cond = COL_LOC + "=?"; 

String orderBy = COL_DATA + " ASC"; 

 

//... 

Cursor rez = bd.query(AccesBD.TABELA_INTILNIRI, null, cond, paramWhere, null, null, 

orderBy); 

 

rez.moveToFirst(); 

//... 

 

for (int i=0; i < nInreg; i++)  

//sau while(rez.isAfterLast() != false) 

{ 

 intilniri[i] = new Intilnire(rez.getInt(0), rez.getLong(1), rez.getString(2), 

rez.getString(3)); 

 rez.moveToNext(); 

} 

 

Typically, databases are saved to the 

associated application data directory 

(/data/data/package_name). 

 

3 Symbian 

Symbian C++ API provides several classes to 

access SQLite database engine [1], [2]. The 

RSqlDatabase class is used for database 

management. The class allows execution of 

SQL statements that doesn't return values. 

SQL commands that return data or use 

parameters are managed by RSqlStatement 

class. In order to access these classes sqldb.h 

header file and sqldb.lib library are required. 

In order to create a new database Create() or 

CreateL() methods are used. The methods 

receive the parameters associated with the 

database file name and, optionally, specific 

security policy flags (TSecurityPolicy and 

RSqlSecurityPolicy) and configuration 

parameters. The flags determine database and 

its objects access mode and the access rights 

(read, write, etc.). 

Opening a database is done with the Open() 

or OpenL() method  that receives as 

parameters the database name and optional 

configuration parameters. 

Execution of SQL that does not return results 

achieved with the method Exec() which 

receives as parameter a descriptor initialized 

with SQL command. RSqlDatabase class 

includes methods to copy (Copy()) and 

delete (Delete()) databases. Method Close() 

is called to release resources. The following 

example shows a Symbian C++ sequence 

that creates a database with a single table.

 
_LIT(KBD, "c:\\pdm.db"); 

_LIT(KExecCreate, "CREATE TABLE Intilniri (id INTEGER PRIMARY KEY AUTOINCREMENT, 

data INTEGER, subiect TEXT,  loc TEXT)"); 

RSqlDatabase bd; 

 

//database creation 

bd.CreateL(KBD); 

CleanupClosePushL(bd); 

 

//CREATE command execution 

bd.Exec(KExecCreate); 

     

CleanupStack::PopAndDestroy(); 

bd.Close(); 

 

SQL queries requests that return values or 

uses parameters are implemented using 

RSqlStatement class. Objects initialization 

is achieved by Prepare()/PrepareL() 

method calls. The methods receive as 

parameters an opened database handle and a 

descriptor initialized with a SQL command. 

An exception is thrown if the database is not 

initialized or the SQL command is invalid. 

The method Next() is called in order to 

receive the current record. The method 

returns KSqlAtRow value if the current 



136   Informatica Economică vol. 16, no. 1/2012 

 

record is valid. The method ColumnTYPE() 

is called with the column index in order to 

obtain the corresponding value. TYPE 

represents the column data type (Text, Int64, 

Binary, etc.). The following example shows 

a simple selection. 

 
_LIT(KBD, "c:\\pdm.db"); 

_LIT(KSelect, "SELECt * FROM Intilniri;"); 

 

RSqlDatabase bd; 

RSqlStatement sqlSelect; 

 

//open database  

User::LeaveIfError(bd.Open(KBD)); 

CleanupClosePushL(bd); 

 

//command initialization 

User::LeaveIfError(sqlSelect.Prepare(bd, KSelect)); 

CleanupClosePushL(sqlSelect); 

      

TBuf<20> subiect; 

TBuf<20> loc; 

TInt64 ms; 

 

//query execution 

while(sqlSelect.Next() == KSqlAtRow)  

{ 

 ms = sqlSelect.ColumnInt64(1); 

 TTime data(ms); 

 sqlSelect.ColumnText(2, subiect); 

 sqlSelect.ColumnText(3, loc); 

//process current record 

} 

 

CleanupStack::PopAndDestroy(2); 

bd.Close(); 

 

If SQL commands use parameters, their 

names are included in the constant descriptor 

preceded by colon symbol (:). 

ParameterIndex() method is called to obtain 

the parameter associated index. The index is 

later used by methods of like BindTYPE() 

for initialization with the desired values 

(BindText(), BindInt64(), etc.). After the 

parameter initialization the SQL command is 

executed by calling Exec() methods. In order 

to reuse the RSqlStatement object 

(parameter initialization with other values) 

the method Reset() has to be called before. 

The following code sequence exemplifies 

record insertion using parameters.

 
_LIT(KBD, "c:\\pdm.db"); 

_LIT(KInsert, "INSERT INTO Intilniri(data, subiect) values(:vdata, :vsubiect);"); 

RSqlDatabase bd; 

RSqlStatement sqlInsert; 

TInt64 data1; 

TInt64 data2      

//... 

User::LeaveIfError(bd.Open(KBD)); 

CleanupClosePushL(bd); 

User::LeaveIfError(sqlInsert.Prepare(bd, KInsert)); 

CleanupClosePushL(sqlInsert); 

//obtain parameter index 

TInt p1 = sqlInsert.ParameterIndex(_L(":vdata"));        

TInt p2 = sqlInsert.ParameterIndex(_L(":vsubiect")); 

//parameter initialization for first record 

User::LeaveIfError(sqlInsert.BindInt64(p1, data1)); 

User::LeaveIfError(sqlInsert.BindText(p2, _L("Curs 1"))); 

// INSERT execution 

User::LeaveIfError(sqlInsert.Exec()); 



Informatica Economică vol. 16, no. 1/2012   137 

 

//reset 

User::LeaveIfError(sqlInsert.Reset()); 

//parameter initialization for second record 

User::LeaveIfError(sqlInsert.BindInt64(p1, data2)); 

User::LeaveIfError(sqlInsert.BindText(p2, _L("Curs 2"))); 

//INSERT execution 

User::LeaveIfError(sqlInsert.Exec()); 

CleanupStack::PopAndDestroy(2); 

bd.Close(); 

 

4 Windows Mobile 

Windows CE includes a proprietary database 

system called EDB (Embedded Database) 

[1], [3]. The following steps are required in 

order to populate a database: 

 create or open a volume and mount it 

using CeMountDBVolEx() function; the 

volumes are identified by CEGUID type. 

It is initialized when to volume is 

mounted. 

 if database doesn't exists it is created by 

calling CeCreateDatabaseWithProps() 

function; if database exists it is opened by 

CeOpenDatabaseInSession() calling 

function; session identifier is obtained in 

advance by calling CeCreateSession() 

function; 

 the records are written by calling 

CeWriteRecordProps() function, for 

data stream operation CeStreamWrite() 

is used; function 

CeStreamSaveChanges() is called to 

effectively write data; 

 the handle are released calling 

CloseHandle() function. 

To read records from an existing database: 

 open and mount an existing volume by 

calling CeMountDBVolEx(); 

 open a session with CeCreateSession(); 

 open the database by calling 

CeOpenDatabaseInSession(), using the 

existing session identifier; 

 if necessary, find a specific record using 

CeSeekDatabaseEx() function; 

 read records with 

CeReadRecordProps() function, if 

carried out operations on the data stream 

the CeStreamRead() function is used; 

 release the handles using CloseHandle(). 

Operations can be performed and the 

transaction level. In this case it is necessary 

to call CeBeginTransaction() function  at 

beginning and CeEndTransaction() to the 

end in order to save updates made. 

The functions CeFindFirstDatabaseEx() 

and CeFindNextDatabaseEx() are used to 

search a database in a volume. Database 

information are obtained by using 

CeOidGetInfoEx2() function. 

Attributes are stored with the records in the 

database.  CEPROPVAL structure is used 

access properties from a database [1], [3]. 

The properties are identified by a code and 

an associated data type. These components 

are coded in proprid field. The val field is 

presented as a union of type 

CEVALUNION, and it store a property 

value for the current record. Property types 

are shown in Table 2. 

 

Table 2. EDB Data Types 

Type C/C++ 

type 

Field 

CEVT_I2 short iVal 

CEVT_UI2 USHORT uiVal 

CEVT_I4 long lVal 

CEVT_UI4 ULONG ulVal 

CEVT_FILETIME FILETIME filetime 

CEVT_LPWSTR LPWSTR lpwstr 

CEVT_BLOB CEBLOB blob 

CEVT_BOOL BOOL boolVal 

CEVT_R8 double dblVal 

CEVT_STREAM - - 

CEVT_RECID CEGUID  

CEVT_AUTO_I4 long lVal 

CEVT_AUTO_I8 double dblVal 

 

The following listing shows how to display 

all records from all databases within a 

volume.

 



138   Informatica Economică vol. 16, no. 1/2012 

 

 
CEGUID guid; 

CEVOLUMEOPTIONS cevo = {0}; 

cevo.wVersion = 1; 

CEOIDINFOEX oidInfo = {0}; 

wchar_t buff[250]; 

HANDLE hSes, hBD, hBDS; 

BOOL rez;     

rez = CeMountDBVolEx(&guid, L"pim.vol", &cevo,OPEN_EXISTING); 

if (rez == FALSE) { /*erorr*/ } 

hBD = CeFindFirstDatabaseEx(&guid, 0); 

if (hBD != INVALID_HANDLE_VALUE) 

{ 

 oidInfo.wVersion = CEOIDINFOEX_VERSION; 

 oidInfo.wObjType = OBJTYPE_DATABASE; 

 //creare sesiune 

 hSes = CeCreateSession(&guid); 

 if (hSes == INVALID_HANDLE_VALUE) {/* error */} 

 CEOID oidBD = CeFindNextDatabaseEx(hBD, &guid); 

 while (oidBD != 0) 

 { 

//obtain database information 

 rez = CeOidGetInfoEx2(&guid, oidBD, &oidInfo); 

 if (rez != TRUE) {/* error */} 

 //open database  

 hBDS = CeOpenDatabaseInSession(hSes, &guid, &oidBD,  

      oidInfo.infDatabase.szDbaseName, NULL,  CEDB_AUTOINCREMENT, NULL); 

 if (hBDS == INVALID_HANDLE_VALUE) {/* error */} 

 PCEPROPVAL pInreg = NULL; 

 PBYTE pBuffInreg  = NULL;//memory is allocated by function  

 WORD wProp;//number of properties 

 DWORD dwLgInreg;// record lengths 

 //memory is allocatd by function  

 CEOID ceoid  = CeReadRecordPropsEx(hBDS, CEDB_ALLOWREALLOC, &wProp, NULL,  

      &(LPBYTE)pBuffInreg, &dwLgInreg, NULL); 

 int k = 0; 

 while(ceoid != 0) 

 { 

  pInreg = (PCEPROPVAL)pBuffInreg; 

  //for each field 

  for (int i = 0; i < wProp; i++) 

  { 

         switch(LOWORD(pInreg->propid)) 

   { 

   case CEVT_LPWSTR: 

  //process string values 

  break; 

   //integers 

   case CEVT_I2: 

   case CEVT_I4: 

   case CEVT_UI2: 

   case CEVT_UI4: 

   case CEVT_AUTO_I4: 

   case CEVT_BOOL: 

    //process integer values  

  break; 

   case CEVT_R8: 

  //process floating point values  

  break; 

   default: 

  //other types  

  break; 

 } 

  OutputDebugString(buff); 

 //next field  

pInreg++; 

 } 

 LocalFree(pBuffInreg); 



Informatica Economică vol. 16, no. 1/2012   139 

 

 //next record  

ceoid  = CeReadRecordPropsEx(hBDS, CEDB_ALLOWREALLOC,  &wProp, NULL,  

    &(LPBYTE)pBuffInreg, &dwLgInreg, NULL); 

   k++; 

 } 

 CloseHandle(hBDS); 

//next database 

 oidBD = CeFindNextDatabaseEx(hBD, &guid); 

 } 

 CloseHandle(hBD); 

 CloseHandle(hSes); 

}  

CeUnmountDBVol(&guid); 

 

Functions and structures for EDB database 

operations are defined in the file header 

windbase_edb.h and EDB symbol should be 

defined. 

SQL Server CE databases are accessible 

through ADO.NET using .NET Compact 

Framework platform [1], [7]. It includes the 

System.Data.SqlServerCe namespace that 

exposes classes such as: SqlCeConnection, 

SqlCeCommand, SqlCeDataReader, 

SqlCeDataAdapter, SqlCeEngine, 

SqlCeResultSet, SqlCeUpdatableRecord.  

 

5 Windows Phone 
Windows Phone includes support for SQL 

Server Compact database. Database access is 

done through LINQ (Language Integrated 

Query) [1], [4]. NET platform includes LINQ 

to SQL component for relational data 

management using objects. Therefore, 

projects must include a reference to 

System.Data.Linq library and the related 

namespace. In order to access database 

objects in Windows Phone applications is 

necessary to create classes associated with 

the relational model. The classes associated 

to database tables are decorated Table 

attribute. Associated column properties are 

marked with the attribute Column. If a 

property is the primary key, Column 

attribute constructor is receive 

IsPrimaryKey parameter initialized to true. 

If field values are generated automatically, 

the IsDbGenerated property is initialized to 

true. In order to index data in a table the 

attribute Index is used. 

For dynamic data linking and notifications 

related to data changes, the interfaces 

INotifyPropertyChanging (the event 

PropertyChanging fires before changing the 

value of property) and 

INotifyPropertyChanged (the 

PropertyChanged event is fired after 

changing occurs) are implemented. 

Database connection is managed using 

DataContext class. It is responsible for 

translating the object model in a database. In 

applications, the database associated class is 

derived from DataContext class. The 

database connection string is "Data 

Source=isostore:/database_name.sdf" and it 

is passed as a parameter to DataContext 

class constructor. In addition to filename, the 

connection string allows transmission of 

database-specific parameters like user, 

password etc.  

Database associated class include tables as 

objects of type Table<T>. The class 

Table<T> includes InsertOnSubmit() 

method to add new records. The method 

receives as parameter an object of associated 

table class type. Update operations are made 

by changing the associated properties values 

using a table object. Deleting a record is 

made by DeleteOnSubmit() method and 

deleting multiple records by using 

DeleteAllOnSubmit() method. The methods 

receive as parameter the object that will be 

deleted, respectively the collection of records 

that will be deleted (as a result of a query). 

Data query is made through LINQ. In order 

to save changes the method 

SubmitChanges() form existing 

DataContext class has to be called. 

Creating a new database is done by calling 

method CreateDatabase() the DataContext 

class. To delete an existing database 

deleteDatabase() method is called. 



140   Informatica Economică vol. 16, no. 1/2012 

 

DatabaseExists() method  returns true if a 

database exists. 

To change the database structure and object 

of DatabaseSchemaUpdater type need to be 

initialized by calling 

CreateDatabaseSchemaUpdater(). The 

class provides methods for adding tables and 

relationships and columns. The method 

Execute() is called to apply changes.  

The existing databases created using the 

development environment or through 

dedicated applications, can be included in the 

project as resources or as content. This is a 

database table associated class:

 
[Table] 

public class Test : INotifyPropertyChanged, INotifyPropertyChanging 

{ 

  //test description 

  string descriere; 

  //test date 

  DateTime data; 

 

  public event PropertyChangedEventHandler PropertyChanged; 

  public event PropertyChangingEventHandler PropertyChanging; 

 

  [Column(IsPrimaryKey=true, IsDbGenerated=true)] 

  public int Id  { get;  set;   } 

 

  [Column] 

  public string Descriere 

  { 

    get { return descriere;  } 

    set 

    { 

      if(PropertyChanging != null) 

         PropertyChanging(this,  

     new PropertyChangingEventArgs("Descriere")); 

      descriere = value; 

 

      if (PropertyChanged != null) 

         PropertyChanged(this,  

         new PropertyChangedEventArgs("Descriere")); 

      } 

   } 

 

  [Column] 

  public DateTime Data 

  { 

    get { return data; } 

    set 

    { 

       if(PropertyChanging != null) 

          PropertyChanging(this,  

       new PropertyChangingEventArgs("Data")); 

       data = value; 

 

       if (PropertyChanged != null) 

           PropertyChanged(this,  

        new PropertyChangedEventArgs("Data")); 

     } 

  } 

 

  [Column] 

  public int NumarIntrebari { get;  set; } 

} 

 

 

The associated database class is defined as follows:

 
public class TestDataContext : DataContext     



Informatica Economică vol. 16, no. 1/2012   141 

 

{         

   public static string connString = "Data Source=isostore:/Teste.sdf"; 

   public TestDataContext(string connString) : base(connString)        { } 

   public Table<Test> Teste; 

} 

 

This code sequence is used to create the database:

 
using TestDataContext bd = new TestDataContext(TestDataContext.connString) 

{ 

  //if the database not exists it will be created 

  if (!bd.DatabaseExists())  

  {  

     bd.CreateDatabase();  

  }  

} 

 

This code sequence is used to add new records in the table: 

 
Test test = new Test 

{ 

    Descriere = editDescriere.Text, 

    //if the current value is null, the current date is used 

    Data = dp.Value ?? DateTime.Now, 

    NumarIntrebari = Int32.Parse(editIntrebari.Text) 

 }; 

 

using (var bd = new TestDataContext(TestDataContext.connString)) 

{ 

   //insert records 

   bd.Teste.InsertOnSubmit(test); 

   //commit the changes 

   bd.SubmitChanges(); 

} 

 

In order to update a record, the following code sequence is used: 

 
using (var bd = new TestDataContext(TestDataContext.connString)) 

{ 

 //get the test with the given id  

 var test = (from Test test in bd.Teste 

             where test.Id == id 

             select test).First(); 

 //apply the changes 

 //dp is a DatePicker 

 test.Data = dp.Value ?? DateTime.Now; 

 //editDescriere is a TextBox  

 test.Descriere = editDescriere.Text; 

 // editIntrebari is a TextBox 

 test.NumarIntrebari = Int32.Parse(editIntrebari.Text); 

 // commit the changes 

 bd.SubmitChanges(); 

} 

 

6 Conclusion and future work 

Every mobile modern operating system and 

platform includes a database engine and 

makes APIs available to developers. The 

development complexity of database-

powered mobile applications varies from 

platform to platform.  

Future work includes database performance 

analysis on each presented platform. Another 

aspect that has to be analyzed is related to 

database security. 

 

References 

[1] P. Pocatilu, Programarea dispozitivelor 



142   Informatica Economică vol. 16, no. 1/2012 

 

mobile, ASE Publishing House, 

Bucharest, 2012 

[2] I. Litovski, R. Maynard, Inside Symbian 

SQL: A Mobile Developer’s Guide to 

SQLite, John Wiley & Sons, 2010 

[3] D. Boling, Programming Microsoft 

Windows Embedded CE 6.0, Microsoft 

Press, 2008 

[4] Rob Miles, Windows Phone 

Programming in C#, available online at: 

http://www.robmiles.com/c-yellow-

book/Rob%20Miles%20Windows%20Ph

one%20Blue%20Book.pdf, [October 

2011] 

[5] S. Hashimi, S. Komatineni, D. MacLean, 

Pro Android 3, Apress, 2011 

[6] P. Yao, D. Durant, .NET Compact 

Framework Programming with C#, 

Prentice Hall PTR, 2004 

[7] A. Wigley, D. Mothand, P. Foot, Microsoft 

Mobile Development Handbook, Microsoft 

Press, 2007 

 

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and 

Economic Informatics in 1998. He achieved the PhD in Economics in 2003 

with thesis on Software Testing Cost Assessment Models. He has published 

as author and co-author over 45 articles in journals and over 40 articles on 

national and international conferences. He is author and co-author of 10 

books, (Mobile Devices Programming and Software Testing Costs are two of 

them). He is associate professor in the Department of Economic Informatics 

of the Academy of Economic Studies, Bucharest. He teaches courses, seminars and 

laboratories on Mobile Devices Programming, Economic Informatics, Computer 

Programming and Project Management to graduate and postgraduate students. His current 

research areas are software testing, software quality, project management, and mobile 

application development. 


