
60  Informatica Economică vol. 16, no. 1/2012 

 

SOA and Web Technology for Building BSE Market Map 

 
Claudiu VINŢE

1
, Alexandru JURUBIŢĂ

2 

1
Bucharest Academy of Economic Studies 

2
Blue BitBox 

claudiu.vinte@ie.ase.ro,  alexandru.jurubita@gmail.com

 

Visual representation as a map of the stock market data can offer access, in a quick and rele-

vant manner for human participants, to the overall state of the market at a given point in time. 

The purpose of this paper is to present the results of our academic research upon building the 

market map for Bucharest Stock Exchange (BSE). We will focus on the algorithm for generat-

ing the market map, the system architecture, and web technology employed for capturing the 

required data and making the map publicly available through the portal www.bursa.ase.ro.  

Mathematics Subject Classification: 68M14 (Distributed Systems) 

Keywords: Service-Oriented Architecture (SOA), Message-Oriented Middleware (MOM), Ja-

va Message Service (JMS), Tree-Maps, Stock Market Map, Recursive Algorithms, Divide-

and-Conquer Strategy 

 

Introduction 

Having to face the current complexity of 

the financial markets in general, and the capi-

tal market in particular, the general public, 

the investors, and the specialists alike are 

continuously requesting various tools de-

signed to assist them in assessing the evolu-

tion of the market as whole, as quickly and as 

accurately as possible. 

There is a large spectrum of instruments, 

graphical and non-graphical, conceived to 

capture the evolution of a given stock on the 

market, over a certain time window, most of 

them generically falling in one of the follow-

ing category: 

 2-D charts - evolution of stock price over 

time - in a variety of representations (line 

charts, bar charts, Japanese candlesticks 

etc.); 

 3-D charts, more or less, representing, for 

instance, the evolution in time of stock 

price, connected with the corresponding 

traded volume; 

 statistical indicators, arranged in tables, 

arrays etc., and which are to be interpreted 

as numbers. 

In 1991, Ben Shneiderman proposed a novel 

way for visualizing tree structures that turn-

out to have multiple applications since then 

[1].  Shneiderman was looking in particular 

for a more economical visual representation 

of tree structures with a large number of 

nodes. He proposed a 2-D space-filling ap-

proach for tree nodes representation, in 

which each node is a rectangle whose area is 

proportional to some attribute such as node 

size. Shneiderman’s approach marks a depar-

ture from the traditional tree structures repre-

sentation, as a rooted, directed graph with the 

root node at the top of the page, and children 

nodes below the parent node with lines con-

necting them. Donald Knuth has a long dis-

cussion about this standard representation, 

especially why the root is at the top, and he 

offers several alternatives including brief 

mention of a space-filling approach [2]. 

Previously, there had been research on rela-

tionships between 2-D images and their rep-

resentation in tree structures, which had fo-

cused on node and link representations of 2-

D images. The work on this path includes 

quad-trees and their variants, which are im-

portant in image processing [3]. The goal of 

quad-trees is to provide a tree representation 

for storage compression and efficient opera-

tions on bit-mapped images. XY-tree [4] are 

a traditional tree representation of 2-D lay-

outs found in newspaper, magazine, or book 

pages [5]. Related concepts include K-D 

trees [6], which are often explained with the 

help of a 2-D rectangular drawing [7], and 

hB-trees [8], which are a more advanced 

multi-attribute indexing method that has a 

useful 2-D representation. Nevertheless, as 

1 



Informatica Economică vol. 16, no. 1/2012  61 

 

Shneiderman noted in his paper, none of the-

se projects sought to provide human visuali-

zation aids for viewing large tree structures. 

The original Shneiderman’s goal for his work 

was to gain a better representation of the uti-

lization of storage space on a hard disk as 

viewed from the perspective of a multiple 

level directory of subdirectories and files, as 

in modern OS file managers. 

Knuth had proposed an approach to this 

problem, by choosing a 1-D representation of 

a multi-colored line, with the length of a por-

tion representing the length of each file [2]. 

This is impractical because the line would be 

too long to view a great number of segments. 

On the other hand, a 3-D or higher dimen-

sional approach might be difficult to draw 

and view. Shneiderman proposed a 2-D 

space-filling approach, in which each file 

was to be represented as a small rectangle. 

This method of tree visualization, called tree-

maps, offers a very compact and suggestive 

view, and provides opportunities for many 

other applications. 

Perhaps one of the most popular implementa-

tion of tree-maps, particularly related to the 

field of stock market is the one which shows 

around 600 the most popularly held stocks 

listed on the American market, organized by 

industry groups, size-coded by market capi-

talization, and color-coded to show price var-

iation: www.smartmoney.com/map-of-the-

market/. 

 

2 The algorithm 

In a previous paper [12], we briefly intro-

duced the results of our research and pro-

posed a visual way for capturing the evolu-

tion of the entire Bucharest Stock Exchange 

market (BSE), over a given time span [9]. 

The concept is driven chiefly by the follow-

ing three principles: 

 concentrate on an unique board all, or 

most of the companies listed on BSE, des-

ignated section of the exchange, or 

grouped them by industrial sector etc.; 

 the size of each company represented on 

the board is given by its market capitaliza-

tion, relative to the entire market capitali-

zation; 

 the evolution of a stock price is to be dis-

played based on a color scheme. 

Each of the above principles generates a cer-

tain perspective over the stock market. Con-

sidered all of them together, they lay out the 

fundamentals for designing a map of the 

market, that has the ability to provide, at a 

glance, the position on the market (or within 

a certain industrial sector) of each listed 

company, the size of a company (relative to 

the size of the others, and to the market as a 

whole), along with the stock price variation. 

The color-coded price variation, adds in fact 

a new informational dimension to a 2-D map 

otherwise. 

On the market map, there will be a rectangle 

associated to each listed company. The size 

of the rectangle is proportionally determined, 

based on the relative weight (ratio) of the in-

dividual market capitalization of a considered 

company, in the overall market capitaliza-

tion.  

The algorithm, which we proposed for such a 

map of the stock market, relies on the availa-

bility from the market place of the following 

input data: 

 number of the companies to be included in 

the map; 

 market capitalization of each company - 

computed by multiplying the number of 

the shares, issued by the company on the 

market, with the close price of the stock 

from the previous trading day, or from the 

reference date that we may want to take as 

base; 

 stock price variation during the day, or 

over the considered time window. 

Another input parameter for the algorithm is 

the size of the board on which the map is to 

be drawn. It is given as the length and the 

height of the map board, in number of pixels.  

In order to fill the map, the algorithm has to 

determine the dimensions of each rectangle, 

in connection with the market capitalization 

of the corresponding company.  

We would like point out that this space-

filling approach makes for a different prob-

lem than the one concerning 2-D rectangular 

cutting, in which the size of the rectangular 

pieces is a prerequisite and, consequently, 



62  Informatica Economică vol. 16, no. 1/2012 

 

not adjustable. Therefore, as long as relative 

sizes of the companies are preserved, and the 

drawing board offers enough resolution to fit 

the number of the companies considered, the 

algorithm is able to determine a distribution 

for drawing the map. 

Figure 1 illustrates the concept that we have 

proposed, sampling a handful of companies 

put together within a stock map, and reveal-

ing the above-mentioned perspectives. 

Each rectangular is identified based on the 

coordinates of its topmost left corner Cx, Cy, 

and the lengths on X (abscise) and Y (ordi-

nate) axis, Lx and Ly, respectively. 

 

 

 

 

 

 
 

[(C1x, C1y), L1x, L1y] 

 

 

 

 

[(C2 x, C2y), L2x, L2y] 

 

 

 

 
 

[(C3x, C3y), L3x, L3y] 

 

 

 

[(C4x, C4y), L4x, L4y] 

 

X Axis, Length Lx 

Y
 A

x
is, W

id
th

 L
y

 

 

 

[(C5x, C5y), L5x, 

L5y] 

 

 

 

[(C6x, C6y), 

L6x, L6y] 

 
Fig. 1. A rectangular based distribution of market capitalization 

 

In practice, there may be great discrepancies 

among the listed companies, when it comes 

to market capitalization. The gap between the 

bigger companies and the smaller ones may 

end up in the range of thousands of times. 

That introduces the impossibility of preserv-

ing the real weight (ratio) of an individual 

company on the market, when its size has to 

be translated into the dimensions of a rectan-

gle to be drawn on a computer screen. We 

addressed this issue by normalizing the mar-

ket capitalization of each company and, con-

sequently, of the stock market as a whole. 

The normalization process is conducted by 

computing a logarithmic factor that is de-

signed to bring the market capitalization of 

the companies into a narrower interval of 

values, preserving, to a certain extent, the 

original proportions among the companies. 

Formalized, the normalization process is de-

scribed below. 

 

nipqmc iii ,1,    (1) 





n

i

imcMC
1

   (2) 

n

MC
mc      (3) 

ni

fmcmc

mc

mc

mc

MC
f

iii

ii

i
,1,

'

1lnln












































  (4) 





n

i

imcMC
1

''    (5) 

where: 

n number of listed companies on the 

market 

qi number of shares issued on the mar-

ket by company i 

pi last close price for the stock of com-

pany i 

imc  market capitalization of company i 

mc  the average market capitalization of a 

company on the considered market 

MC overall market capitalization 

if  normalization factor 



Informatica Economică vol. 16, no. 1/2012  63 

 

imc'  normalized market capitalization, cor-

responding to company i 

'MC  normalized overall market capitaliza-

tion 

The logarithmic factor takes into account the 

weight of a company in the overall market 

capitalization, and the distance of an individ-

ual market cap from the average market capi-

talization. Once the input data is adjusted to 

the needs of the graphical representation on a 

computer screen, the algorithm can begin to 

determine the position and the size of each 

rectangle on the map, associated to the com-

pany considered. 

The algorithm allocates the rectangles on the 

market board based on a divide-and-conquer 

strategy, implemented in a recursive manner 

(Figure 2). 

 

 
Fig. 2. BSE market map built on One-Third distribution model 

 

At each step, the algorithm distributes the 

companies in two groups: the companies that 

are to be allocated on the board at the current 

stage, and the companies that are to be allo-

cated on the remaining area of the board in 

the subsequent steps. The procedure contin-

ues recursively for the latter group of compa-

nies, until the companies are exhausted, 

along with the available drawing area of the 

board [10] [11].  

The rectangles are colored, based on the 

price variation of the stock within the consid-

ered interval of time. In Figure 2, the chosen 

color scheme has the following interpreta-

tion:  

 nuances of red for loses; 

 black for stagnation of stock price; 

 nuances of green for price gains on the 

market. 

The companies are allocated beginning with 

the biggest company from the topmost left 

corner of the map, and continuing toward the 

smallest company listed on the market, which 

will end up in the bottommost right corner of 

the map. There are multiple ways to fill the 

area of the drawing board, or distribute the 

rectangles on the map. 

The algorithm that we propose offers the 

flexibility for tailoring the ratio between the 

length and the height of the rectangles. This 

form factor layout is achieved through an ad-

ditional parameter supplied to the recursive 

function, parameter that instructs where the 

cut is to be executed on X-axis, or Y-axis, re-

spectively.  



64  Informatica Economică vol. 16, no. 1/2012 

 

At each stage of the recursion, the algorithms 

choose to make a cut on the axis that offers 

the greater remaining length. Then, based on 

the desired form factor, the cut divides the 

remaining area into the area to be filled at the 

considered stage, and the area to be filled lat-

er on. 

For instance, the layout shown in Figure 2 

was obtained by using a form factor of 1/3 

(One Third), meaning that up to one third of 

the map area from the topmost left corner is 

filled first. 

After extended tests, we opted for three pre-

defined form factors that proved to offer the 

most pleasing visual differences: One Third, 

Half, Two Third. Figure 3 bellow shows a 1/2 

form factor layout, along with the vio-

let/yellow color scheme and highlighted 

gainers (the rectangles with red borders). 

 

 
Fig. 3. BSE market map built on Half distribution model with highlighted gainers 

 

3 CARD system architecture and imple-

mentation 

One of desiderates that we embraced from 

the initial phase of this research was the 

commitment of employing open source tech-

nologies throughout the entire system envi-

ronment. Our goal has been to provide for the 

users a convenient way of accessing BSE 

market map from the internet, through the 

means of employing a servlet responsible for 

HTTP tunneling [12] [13]. From the end user 

perspective, CARD (Capital Allocation 

through Rectangular Distribution) system 

consists in a collection of services accessible 

from a single entry point offered by a web-

based graphical user interface (Figure 4). 

 



Informatica Economică vol. 16, no. 1/2012  65 

 

 

Physical 

Destinations 

Persisted Messages 

and Broker State 

Configuration Files 

and Logs 

User Repository 

JMS 

Provider 

HTTP Tunnel 

Servlet  

Web Server  

Firewall 

Java Client 

Runtime 
Java Client 

Runtime 

CARD 

 GUI 

. . . 

 

SOAP 

Client  

Delayed Data 

Feeds (DDF) 

Bucharest 

Stock 

Exchange 

(BSE) 

Companies 

Prices 

Java Client Runtime 

Java   

Client 

Runtime 

Data Base 

Server (DBS) 

CARD 

 GUI 

Capital Allocation 

through Rectangular 

Distribution Engine 

(CARD) 

 

Java 

Client 

Runtime 

Java Client 

Runtime 

CARD 

 GUI 

 
Fig. 4. CARD system architecture 

 

Essentially, CARD GUI has been imple-

mented as a Java applet, which can be 

launched from a web browser. The applet is 

the only component of the system that the 

users come in contact with. All the other 

components of the system are transparent to 

the end-user, and create an environment that 

replicates the perspective of having access to 

a pool of services. 

The architectural design is one of service-

orientation (SOA). Each component of the 

system exposes its functionality, as a service 

provider, to the other components [14] [15]. 

The requests for services and the replies are 

flowed through a message-oriented middle-

ware (MOM). A MOM makes use of a mes-

sage provider (broker) to mediate the mes-

saging operations. In this parading, the ele-

ments of a MOM-based system are the client 

applications, the messages, and the message 

provider. Under the broad umbrella of client 

applications, can be in fact identified certain 

applications that functionally play the role of 

a client, and others that have the functional 

role of a server. All the system applications 

are perceived as clients of the MOM message 

broker [16]. Within a MOM-based system, a 

client makes an API call by sending a mes-

sage to a destination managed by the mes-

sage provider. The call triggers message pro-

vider services to route and deliver the mes-

sage to the consumer. Once the message was 

sent, the producer can continue the pro-

cessing flow, relying on the fact that the mes-

sage provider retains the message until a con-

sumer component is available to process it. 

In this manner, the MOM-based model, in 

connection with the message provider, open 

the possibility of creating an architecture 

with loosely coupled components. Such a 

system can continue to function reliably, 

without downtime, even when individual 

components or connections fail. The client 

applications are consequently effectively re-

lieved of every communication issue, except 



66  Informatica Economică vol. 16, no. 1/2012 

 

that of sending, receiving and processing 

messages [17].  

CARD API has been designed and imple-

mented in conjunction with Java Message 

Service (JMS) API. JMS specification cap-

tured, from its conception, the essential ele-

ments of a generic messaging system, name-

ly: 

 the concept of a messaging provider that 

routes and deliver messages; 

 distinct messaging patterns, or domains 

such point-to-point messaging and pub-

lish/subscribe messaging; 

 facilities for synchronous and asynchro-

nous message receipt; 

 support for reliable message delivery; 

 common message formats such as text, 

byte and stream. 

Summarizing, messaging is a very effective 

means of building the abstraction layer with-

in SOA, needed to fully abstract a business 

service (functionality) from its underlying 

implementation. Through business messag-

ing, the business service does not need to be 

concerned about where the corresponding 

implementation service (say, the CARD en-

gine) is located, what language it is written 

in, what platform it is deployed on, or even 

the name of the implementation service. All 

the above-mentioned elements have equally 

constituted the reasons why we turned to 

Open Message Queue (OpenMQ), as the 

open source MOM implementation of JMS, 

for designing CARD architecture based on it. 

We will briefly describe the functionality of 

each system component, as they were illus-

trated in Figure 4. 

Delayed-Data Feed (DDF) consists of a col-

lection of web-clients that connect to corre-

sponding web services, intended to capture 

delayed market-data disseminated by The 

Bucharest Stock Exchange (BSE). The feed 

gathers data regarding the financial instru-

ments traded on BSE, listed companies and 

their status, prices, volumes, exchange indi-

ces etc.  

The web services made available by BSE are 

accessible through SOAP formatted messag-

es [19]. Once the market data is captured, 

DDF stores it in the system database, and de-

layed prices are also published to a specific 

topic within the messaging provider; topic at 

which the system components interested in 

these prices can subscribe, as is the case with 

CARD GUI. 

Data Base Server (DBS), in the context of 

CARD system, is the component that pro-

vides the historic price data to CARD GUI, 

based on a request-reply model (in asynchro-

nous fashion). The historical prices support 

the feature of showing on the map the price 

variations since last close, 7, 15 days, 1, 3, 6, 

12 months back, and year-to-date (YTD). In 

order to improve the overall response of the 

system, DBS prefetchs the historical price 

data from the database at launch, for the pre-

defined time references, and has it readily 

available in memory for the client requests. 

A similar mechanism has been implemented 

in CARD GUI as well, in a multithreaded 

fashion. 

Capital Allocation through Rectangular Dis-

tribution engine (CARD) is the component 

that generates the rectangular distribution 

based on which the map of BSE market is 

drawn. This component encapsulates the re-

cursive algorithm that computes the coordi-

nates of each rectangle on the map board. 

The entire CARD system has been imple-

mented in Java. 

 

4 Conclusions and directions for further 

research 

The CARD system (Capital Allocation 

through Rectangular Distribution) that we 

have developed, is able to build various visu-

al market maps for BSE. Hovering the point-

er over the map, allows for choosing the rec-

tangle to be in focus. For the company in fo-

cus is shown a tooltip, which supplies the fol-

lowing information: full name of the compa-

ny, stock symbol, price of the last market 

transaction, percentage and absolute price 

variation since the chosen reference. Figure 5 

shows the market map built on Two-Third 

distribution model, with the focus on symbol 

SIF5, and having the color-coded price varia-

tion for the last month.  

 



Informatica Economică vol. 16, no. 1/2012  67 

 

 
Fig. 5. BSE market map built on Two-Third distribution model 

 

In conclusion, the visual representation as a 

map of the stock market data that we propose 

offers access, in a quick and relevant manner 

for human participants, to the overall state of 

the market at a given point in time. In this 

paper, we have presented the results of our 

academic research upon building the market 

map for Bucharest Stock Exchange (BSE). 

Our implementation of BSE market map is 

publicly available through the portal 

www.bursa.ase.ro. 

The graphical user interface available online 

is transparently updated with fresh market 

data from BSE every minute and, therefore, 

provides a quick and accurate view upon the 

changes occurred on Bucharest stock market, 

over a desired period, to all the interested 

parties: market analysts, brokers, investors 

etc. 

CARD engine provides algorithms for con-

structing, along with 2-D maps, 1-D bars 

with color-coded segments that can be used 

for capturing the weight and the evolution of 

each market sector within an exchange sec-

tion, or on the stock market as a whole, along 

with corresponding price variation, for in-

stance. These graphical bars with multicol-

ored segments are essentially similar with 

what Donald Knuth proposed as a 1-D repre-

sentation of a multicolored line, with the 

length of a portion representing the length of 

each file [2].  

Our undergoing research and development 

for improving the visual experience offered 

by tree-maps of the stock market are focused 

on three directions: 

 expand the visual depth of the map, by 

employing data regarding the structure of 

the market, within the filling algorithm, 

for driving, in a flexible manner, the dis-

tribution of companies within an industrial 

sector, along with the allocation of the 

sectors on the overall market map; 

 mechanisms for embodying the stock 

market map with enriched company spe-

cific financial data, comments and anal-

yses from the market specialists; 

 identify other company specific attributes 

that can be displayed based on the market 

map framework, such as stock entropy, 

and integrate them within CARD system. 

 

Acknowledgements 

We would like to extend our thanks and ap-

preciations to Andrei JURUBIŢĂ and 

Alexandru LIXANDRU, who follow the 

2009-2010 Master’s program series, and 



68  Informatica Economică vol. 16, no. 1/2012 

 

willingly devoted their time and energy for a 

substantial contribution in the final integra-

tion phase of CARD project. 

 

References 

[1] B. Shneiderman, “Tree visualization with 

Tree-maps: A 2-d space-filling ap-

proach”, Department of Computer Sci-

ence & Human-Computer Interaction 

Laboratory, University of Maryland, June 

18, 1991 (in ACM Transactions on 

Graphics). 

[2] D.E. Knuth, The Art of Computer Pro-

gramming: Volume 1 / Fundamental Al-

gorithms, Addison-Wesley Publishing 

Co., Reading, MA, 1968, pp. 305-313, 

435. 

[3] H. Samet, Design and Analysis of Spatial 

Data Structures, Addison-Wesley Pub-

lishing Co., Reading, MA, 1989. 

[4] G. Nagy and S. Seth, “Hierarchical repre-

sentation of optically scanned docu-

ments”, Proc. of the IEEE 7th Interna-

tional Conference on Pattern Recogni-

tion, Montreal Canada, 1984, 347-349. 

[5] J. Ha, R.M. Haralick, I.T. Phillips, “Re-

cursive X-Y Cut using Bounding Boxes 

of Connected Components”, Proceedings 

of the Third International Conference on 

Document Analysis and Recognition 

(ICDAR '95), IEEE 0-8186-7128-9/95, 

1995. 

[6] J. L. Bentley and J.H. Friedman, “Data 

structures for range searching”, ACM 

Computing Surveys, Vol. 11, No. 4, 1979, 

pp. 397-409. 

[7] J.L. Bentley, “Multidimensional Binary 

Search Trees in Database Application”, 

IEEE Transactions on Software Engi-

neering, Vol. SE-5, No. 4, July 1979. 

[8] D.B. Lomet and B. Salzberg, “The hB-

tree: A multiattribute indexing method 

with good guaranteed performance”, 

ACM Transactions on Database Systems, 

Vol. 15, No. 4, December 1990, pp. 625-

658. 

[9] C. Vinţe, “Upon a Tridimensional Per-

spective of the Stock Market”, Proc. of 

the 9th International Conference on In-

formatics in Economy, Bucharest, May 7-

8, 2009. 

[10] D.L. Kreher and R.S.R. Douglas, Com-

binatorial Algorithms – Generation, 

Enumeration and Search, CRC Press 

LLC, 1999. 

[11] Z. Michalewicz and B.D. Fogel, How to 

Solve It: Modern Heuristics, Springer, 

Berlin, Heidelberg, 2000. 

[12] C. Vinţe, ”Upon a Trading System Ar-

chitecture based on OpenMQ Middle-

ware”, Open Source Scientific Journal, 

Vol. 1, No. 1, 2009, Available at: 

http://www.opensourcejournal.ro/ 

[13] Sun Microsystems, Inc. – Java Message 

Service, Available at: 

http://java.sun.com/products/jms/ 

[14] Sun Microsystems, Inc. - Open Message 

Queue: Open Source Java Message Ser-

vice (JMS) - https://mq.dev.java.net/ 

[15] T. Erl (with additional contributors), 

SOA Design Patterns, Prentice Hall by 

SOA Systems Inc., New Jersey, NY, 

2009. 

[16] M. Richards, R. Monson-Haefel, A.D. 

Chappell, Java Message Service (Second 

Edition), O’Reilly Media Inc., Sebasto-

pol, CA, 2009. 

[17] C. Vinţe, ”Upon a Message-Oriented 

Trading API”, Informatica Economica 

Journal, Vol. 14, No. 1/2010. 

[18] M. Kalin, Java Web Services: Up and 

Running, O’Reilly Media Inc., Sebasto-

pol, CA, 2009. 

[19] Bursa de Valori Bucureşti, 

http://www.bvb.ro, there are links to web 

services that provide data regarding listed 

companies, trading activity, delayed price 

data etc. 

[20] ASETS portal, http://www.bursa.ase.ro, 

within The Bucharest Academy of Eco-

nomic Studies. 

 

 

 

http://www.opensourcejournal.ro/
http://java.sun.com/products/jms/
https://mq.dev.java.net/
http://www.bvb.ro/
http://www.bursa.ase.ro/


Informatica Economică vol. 16, no. 1/2012  69 

 

Claudiu VINŢE has over fifteen years of experience in the design and im-

plementation of software for equity trading systems and automatic trade pro-

cessing. He is currently CEO and co-founder of Opteamsys Solutions, a soft-

ware provider in the field of securities trading technology and equity markets 

analysis tools. Previously, he was for over six years with Goldman Sachs in 

Tokyo, Japan, as Senior Analyst within the Trading Technology Department. 

Claudiu's expertise in trading technologies also includes working in Tokyo 

with Fusion System Japan, and Simplex Risk Management as Software Engineer, and Senior 

Software Engineer, respectively. Since 2009, Claudiu has been given lectures and coordinated 

the course and seminars upon The Informatics of the Equity Markets, within the Master’s pro-

gram organized by the Department of Economic Informatics. Claudiu graduated in 1994 The 

Faculty of Cybernetics, Statistics and Economic Informatics, Department of Economic Infor-

matics, within The Bucharest Academy of Economic Studies. He holds a PhD in Economic 

Cybernetics and Statistics from The Bucharest Academy of Economic Studies. His domains 

of interest and research include combinatorial algorithms, middleware components, algorith-

mic trading and web technologies for equity markets analysis. 

 

Alexandru JURUBIŢĂ is a web developer and co-founder of Blue BitBox, 

a young software company based in Bucharest. He holds a master's degree in 

Economic Informatics from the Academy of Economic Studies in Bucharest. 

His fields of interest are user experience design, human–computer interaction 

and artificial intelligence. 

 

 


