
14 Informatica Economică vol. 16, no. 1/2012

Contributions to Logical Database Design

Vitalie COTELEA

Academy of Economic Studies of Moldova, Chisinau, Moldova

vitalie.cotelea@gmail.com

This paper treats the problems arising at the stage of logical database design. It comprises a

synthesis of the most common inference models of functional dependencies, deals with the

problems of building covers for sets of functional dependencies, makes a synthesizes of

normal forms, presents trends regarding normalization algorithms and provides a temporal

complexity of those. In addition, it presents a summary of the most known keys’ search

algorithms, deals with issues of analysis and testing of relational schemes. It also summarizes

and compares the different features of recognition of acyclic database schemas.

Keywords: Logical Database Design, Functional Dependencies, Normal Forms, Acyclic

Database Schema

Introduction

A properly designed database provides

access to accurate and updated data. Because

a correct design is essential for achieving the

goals of using a database, the ability to

design databases and associated applications

is critical to the success of any modern

enterprise. Automatic drafting and the

development of database and of the

information system as a whole consists of a

series of steps that require methodological

research, efficient models and algorithms and

software design tools.

Within the logical design phase, the

conceptual schema, expressed in a high-level

data model is transformed into a global

logical schema, described in a logical data

model, for example, the relational model,

without taking into account a specific

DBMS, in this case, is obtained a system

independent logical design, but dependent on

the data model.

The global logical schema is normalized

[16], [17], all keys [40] and the links between

relations are identified. Then, the global

logical schema and the information about

access to data serve as input for the next step

which is distribution design [47]. The

objective of this phase is to design local

logical schemes, which are distributed to all

the stations of the distributed system. The

paper reviews the current issues that pertain

to logical database design for the purpose of

automation of this process.

2 Visions on functional dependencies

inference models

It is being considered [52] that the problem

of logical design of relational database

consists in laying the theoretical and practical

basis for taking decisions about:

 What should the relations of the database;

 What attributes should each relation

consist of.

Here a design aspect needs to be mentioned -

determination of integrity constraints [49].

Constraints, however, are withdrawn at the

conceptual design phase. Therefore, the

success of DBMS utilization with up-to-date

mechanisms to maintain integrity constraints

cannot depend on a common treatment

process for obtaining these constraints [58].

The simplest integrity constraint is functional

dependency and Codd introduced it into the

database theory [15]. Deriving from semantic

rules, which translate the restrictions of the

domain of interest, the designer has to define,

among other types of dependencies, and

functional dependencies and to introduce

them in the definition of the database

schema. The properties of dependencies are

the ownership of the relational scheme

(intensions) of the database, and not of any

extension of the database, that is these

dependencies are invariant and need to be

satisfied by all legal extensions that

correspond to the scheme [18]. The only way

to find the valid functional dependencies for

a schema consists in a careful analysis of

1

Informatica Economică vol. 16, no. 1/2012 15

each attribute’s significance and of the way

values are assigned to the attributes [51].

Starting from a set of functional

dependencies, attached to a relational

scheme, other valid functional dependencies

can be deducted. There are many rules of

inference and in order to be able to make a

formal presentation of these, three of them

were chosen by Armstrong [1], and the rest

of them are derived from them [35].

Armstrong's axioms represent a set of sound

and complete inference rules. They are sound

because they generate only functional

dependencies and are complete, as they

generate all the possible functional

dependencies based on a given set of

dependencies.

But the utilization of these axioms in

automatic inference is complicated. The

inference has an exponential nature and for

certain dependence it is not unique. In

addition, it is difficult to say unequivocally

that using Armstrong axioms, a dependency

can be inferred or not, due to that the

dependency cannot be deducted because of

an incorrect order of applied axioms.

These disadvantages do not allow the direct

use of rules in the software of relational

schemas design [65]. For these reasons,

another set of rules, also sound and complete,

is defined in [41], but which guides inference

and directs it towards more promising goals.

These sequences are called RAP-derivations,

after the first letters of the rules used.

However, the RAP-derivation sequences are

not unique for a given functional dependency

and they have not eliminated the drawbacks

mentioned above. To exclude these

disadvantages, Beeri and Bernstein [6]

propose a tree derivation model for

functional dependencies. With the help of

this model, the complexity of calculating the

closure of a set of attributes under a set of

functional dependencies is linear. But, to

demonstrate various assertions related to

functional dependency structures is not

appropriate.

The derivation tree was the precursor of an

inference model, called directed derivation

acyclic graph (DDAG), introduced by Maier

[41]. This model can be designed as a

graphical representation of RAP-derivation.

But this model too can generate a range of

sequences of inference for a given

dependency.

Thus, a model is required that would derive

in a linear fashion, the set of attributes that

are functionally dependent (under a set of

functional dependencies) on a given set of

attributes. This model must have the property

of uniqueness and be a very easy tool to use

in demonstrating assertions about structures

of functional dependencies. In general, this

model will not represent anything else than a

sequence of sets of attributes, which are built

in an iterative way, involving, in their

building, groups of functional dependencies

with left sides included in the previous set.

The algorithm based on this model would be

effective, if it would not check repeatedly

each functional dependency, even if it has

already been verified. It must be based on the

fact that each dependency is used only once,

and namely, only when its left side is already

included in the calculated result up to that

point. This can be achieved, for example, by

a counter being associated to each

dependency that stores the number of

attributes from its left side that are not yet

included in the result. When this counter

becomes 0, the respective functional

dependency must be taken into account so

that the right side is added to the result. Of

course, whenever a new attribute is added to

the result, the algorithm has to decrement the

counter value of each dependency containing

this attribute in the left side. To execute this

mandatory step effectively, there must be

maintained for each attribute, a list of

dependencies that contain this attribute in

their left side.

If this strategy is applied, then the

complexity of calculating the closure of

attributes under a given set of functional

dependencies with this model is linear.

Calculation of the closure of a set of

attributes [36] essentially simplifies the

problem of determining whether a functional

dependency belongs to the closure of a set of

16 Informatica Economică vol. 16, no. 1/2012

functional dependencies without having

actually built this closure.

As a sequence of sets of attributes, it can be

constructed and a reduced version of the

model, which can be applied effectively to

the inference of functional dependencies. It is

obvious that this model should be equivalent

to the application of dependencies inference

with Armstrong axioms, that is, must possess

the property of soundness and completeness

[57].

3 Current status of covers for functional

dependencies

Most algorithms of relational database theory

use a set of functional dependencies as input.

Algorithms’ efficiency depends on the

cardinality of the set.

Below are presented a few problems

referring to diverse covers for sets of

functional dependencies. A set of functional

dependencies is a cover for another set, if the

sets are equivalent.

Sets of functional dependencies can be

nonredundant when they do not contain

redundant dependencies, can be left-reduced

or right-reduced, when they do not contain

extraneous attributes in the respective side.

Can be canonical, when dependencies are

left-reduced, non-redundant and the right

side is formed of only one single attribute.

Gottlob in [33] investigates the relative size

of equivalent covers for functional

dependencies.

Taouil and Bastide [53] propose the so-called

proper cover, which is defined as a set of

left-reduced functional dependencies, but

every functional dependency has a single

attribute on the right side.

It may be noted that this type of cover is in a

close relationship with canonical cover and,

consequently, with reduced cover. In fact, a

canonical cover is a proper nonredundant

cover. The relationship with reduced cover is

also more direct. In this case, a proper cover

can be obtained directly from a reduced

cover, using the projectivity axiom, which

decomposes the dependencies in the right

side.

It should be noted that there is no condition

imposed for the obtained set to be

nonredundant, thus, the obtained set will not

be necessarily a canonical cover.

The important result in the domain of covers

for dependencies is described in [42] and

consists in demonstrating the existence of a

minimum cover for functional dependencies

and the presentation of a polynomial

algorithm for the computation of such a

cover.

Finding the minimum covers for a certain set

of functional dependencies is useful because

of at least two points of view:

 To reduce the necessary time required of

their imposition over appropriate database

contents;

 To reduce the time required to execute the

algorithm for calculating the closure

(because it is proportional to the size of

the set of dependencies).

As defined by Maier [42], minimality is

defined in relation with the cardinality of the

sets of dependencies. The notions of

minimum set (with as few dependencies as

possible) and of optimal set (which is as

concise as possible), were introduced by

Maier [41]. He noted that although a

minimum cover for a particular set of

functional dependencies can be found in

polynomial time, the obtainment of an

optimal cover is a NP-complete problem.

Since the problem of finding optimal cover

proved to be complex, it makes sense to

investigate whether the minimum covers are

indeed the best covers that can be obtained.

Mannila and Räihä in [44] explore further the

correlation of these two covers. It has been

proven that the length of a minimum set has

the following properties:

 Cannot be bounded by a linear function on

the length of the optimal cover;

 Is bordered by the square of the optimal

cover length.

It is also proven the fact that NP-

completeness of the optimization problem is

somehow surprisingly caused exclusively by

the difficulty of optimizing only one single

class of dependencies having equivalent left

sides [44].

Informatica Economică vol. 16, no. 1/2012 17

This result reveals a few practical

significances, since the equivalence classes

that occur in practice, are short. Optimization

problem of an equivalence class is studied by

several researchers, but it should be noted

that the left side and the right side present

different behavior.

Thus, the task of obtaining an optimal cover

is part of the NP-complete problems

category. The only way to obtain a solution

in an acceptable time would consist in

proposing certain methods of decomposition

of the initial problem in sub problems which

can be solved and after that, the particular

solutions to be combined in order to build the

solution to the given problem.

Various types of covers assign specific

properties to the database schema. This is the

main reason why so much attention is given

to the algorithms of creating and testing

covers of functional dependencies.

4 Normal forms approaches

Database relations contain both structural and

semantic data. The structure is described by

the relation scheme and semantics is

expressed by the functional relationships

between attributes. A good project of the

database assumes that the grouping of

attributes is rational and satisfies the

following conditions:

 All the keys and their features to be found

and specified for all database relations;

 The content of the relational schemes to

be characterized by a minimal redundancy

which needs to be controlled by the

DBMS;

 Among attributes, there shouldn’t be any

unwanted functional dependencies;

 It is necessary to exclude insert, update

and delete anomalies of the data

operations;

 The restructuring of relational schemas

has to be minimal in the case of database

development.

For obtaining a performing database, an

important role pertains to the normalizing

technique of relations. This technique allows

obtaining the logical scheme through a

process of gradual improvement of an

originally designed scheme by using normal

forms. After each stage of improvement, the

relations in database reach a special degree of

perfection by eliminating a certain type of

unwanted dependencies (partially and

transitively dependent and multivalued

dependencies), so they are in a particular

normal form.

The improvement process must meet the

following requirements:

 Ensure lossless-join decomposition, i.e.,

the final logical scheme must contain all

data from the initial scheme;

 Ensure preservation of data dependencies,

i.e., in the final scheme, each dependency

must have the left and right sides in the

scheme of the same relations;

 Represent a minimal decomposition of the

original relations. None of the relations

that make up the final schema should be

contained in another relation of this

schema.

The quality of a relation (or the ability to

represent the real world without generating

updating problems) is measured by the

degree of standardization. Codd proposed

three normal forms that he called First

Normal Form (1NF) [15], Second Normal

Form (2NF) and Third Normal Form (3NF)

[16]. A stricter definition than 3FN was

proposed by Codd and Boyce [17] and is

known under the name Boyce-Codd Normal

Form (BCNF). All these normal forms,

except for 1FN are based on the functional

dependencies between the attributes of a

relational scheme [11].

The 1NF refers to the structure of the

relation. It is required that each attribute of a

relation is based on an atomic domain.

Database designers have no problem to

recognize whether a relationship is not in the

first normal form [65]. They can bring the

relation in 1FN algorithmically by replacing

the composed domains by atomic constitutive

domains. For 2NF, 3NF and BCNF, it is

necessary that designers of the database

know the meaning and the real application of

keys, such as the candidate keys, primary

ones, super-keys, etc.

18 Informatica Economică vol. 16, no. 1/2012

The 2NF is based on the concept of full

dependency. A relation is considered in 2NF

with respect to a set of functional

dependencies, when it is in 1NF one and each

attribute, which is not a part of any key, is

fully dependent upon every key of the

relation. In other words, there is no attribute

of that type that would partially dependent at

least on one key. It is clear that 2NF is

relevant, in the case when at least one key of

the relation is compound, that is consists of at

least two attributes.

A relation is in 3NF with respect to a set of

functional dependencies, if it is in 1NF and

none of the attributes that are not part of any

key don’t transitively dependent upon a key.

BCNF is an extension of 3NF, when two or

more composite keys overlap (which have at

least one common attribute). If these

conditions are not met, 3NF and BCNF are

equivalent. A relation is in BCNF if and only

if the left side of every non-trivial

dependency is a super-key.

Although the appearance of papers on normal

forms for relational schemes seemed to come

to an end, works in design theory continue to

occur, such as [48, 45, 55, 43]. It was noted

that relations which are in 3NF and are not in

BCNF represent interesting properties. These

properties can be found in the well-known

text- books [59, 24] and in the research

works [21, 60]. In [21], it is proved that if a

relation is in 3NF, but is not found in BCNF,

then the relation must contain at least one

compound key. In another work, Vincent has

deduced a stricter result for this case, and

namely that the relation must possess at least

two keys that dispose common attributes

[60]. However, the brought demonstration

does not cover explicitly the fact that the two

candidate keys are compound.

In specialty literature, it was also observed

that the decomposition of one scheme into

others, which meets the highest normal

forms, is not a sufficient condition for a good

project. Decomposition should be

strengthened further by additional properties

such as lossless join and preservation of

constraints [24]. This requirement becomes

questionable when we see relations, in 3NF,

converted into BCNF, with loss of certain

functional dependencies. Although

Makowsky proposed a division technique of

the attribute set [43], that preserves

dependencies, the separation of attributes is

not always possible.

Logical schema design of a database implies

the determination of the normal form, in

which the relations within the database

should be. In the majority of cases, the

relational databases are constituted of

relations which are in 1NF or 2NF. This is

explained by the fact that the superior normal

forms, though reduce the difficulty of

accomplishing the update tasks they are also

reducing at the same time the performances

of the data retrieval operations [20].

Relations in higher normal forms contain a

small number of attributes and this issue

favors the operations of data actualization,

but burdens their retrieval process, because

data satisfaction require simultaneous

interrogation of multiple relations, so

performing certain join operations, which are

costly in terms of required computing

resources.

It is clear that this form conflicts with the

ANSI/SPARC database architecture, fact

which destroys the independence between

applications and the logical structure, but

also the physical one of the databases.

Another problem is to establish relations to

be part of the database, in the normal form

specified in the previous step and involves

defining the relation schemes and integrity

constraints. The way of establishing the set

of relations in the database is called relations

normalization technique.

Normalization can be achieved by two

methods: through decomposition and through

synthesis.

Normalization through decomposition

utilizes the top-down division method of a

table into two or more tables, keeping

connection information (attributes).

Decomposition is a reversible process, step

by step, of progressive replacement of a

given set of relations with successive sets, in

which the relations are simpler and with

more regular structures [50]. Reversibility

Informatica Economică vol. 16, no. 1/2012 19

ensures that the initial set of relations can be

recovered and therefore no information is

lost [18].

It is well known the fact that a satisfactory

decomposition (with preservation of

dependencies) of the relational database

schema in BCNF is not always possible. This

issue depends on the given set of functional

dependencies, and the corresponding

decisional problem is an NP-hard one. The

only algorithm which guarantees the

preservation of dependencies as well as the

existence of the BCNF was proposed in [46]

which is a raw approach and always requires

exponential time. To be useful in practice, for

example in automated design tools, more

effective means are required.

The paper [37], presents a very efficient

algorithm that always finds a decomposition,

in BCNF, with preservation of dependencies,

if any, and usually an effective one, and

which is exponential only in well-known

cases.

Normalization through synthesis is a method

which starts from an attributes set of global

relation and from a set of functional

dependencies, highlighted by the analysis

process and builds the basic relations of a

decomposition, selecting its attributes in a

certain way. Under certain conditions, the

synthesis can provide a valid decomposition

that preserves functional dependencies. The

synthesis of the schema in 3NF was proposed

by Bernstein [10].

Today, it is required a modification and an

improvement of this algorithm to meet the

demands of the day, taking into account the

dynamic modification of the database

structure imposed by the emergence of new

applications, views which also should enjoy

the properties of the lossless join. Moreover,

it should consider the fact that some

attributes of potential views may not be

involved in the functional dependencies.

5 Aspects for development of keys

searching algorithms

In databases the keys play an important role.

Tuples can be identified, saved and searched

in an unique way. In general, the key is an

attribute or a set of attributes that uniquely

identifies a particular tuple.

The keys are generalized by a type of

functional dependencies. They specify the

relationship between two sets of attributes.

Functional dependencies are used for

database normalization. Therefore, the sizes

of the set of functional dependencies and of

the set of keys present high interest.

Majority of authors in the database domain

provide definitions for the key, but not also a

calculation algorithm for this. David Maier

[41] and Jeffrey Ullman [59] provide

algorithms for calculation of closure for a set

of attributes or a set of functional

dependencies, but the calculation of a key is

left for readers, with the suggestion to use the

algorithm of calculation the closure. The

determination of the keys of a small

relational scheme with a small set of

functional dependencies can be simple, but if

a scheme has a relatively large number of

attributes and/or functional dependencies,

then the finding of keys cannot be a trivial

process [24].

Algorithms for finding the set of all keys for

a relational schema were constructed in [9],

[25], [23], [29], [40]. It should be noted that

the methods proposed by Lucchesi, Osborn

and Fernandez are the only of polynomial

complexity just in some particular cases.

Thus, often, especially when the number of

minimal keys is relatively small, these

algorithms are better than those in [9], [25],

[23].

The prime attributes and the minimal keys

play an important role in the process of

relations normalization. Lucchesi and Osborn

[40] proved that the following two problems

are NP-complete:

1. The prime attribute problem. Being

given a relational scheme and an attribute A ,

to determine if A belongs to a key.

2. The key cardinality problem. Being

given a scheme and an integer 1m , to

determine if there is a key with a cardinality

smaller than m .

Specifically, based on NP-completeness of

statement (2), Maier in [42] noted that there

is probably no polynomial time algorithm for

20 Informatica Economică vol. 16, no. 1/2012

finding an optimal cover for a set of

functional dependencies. This problem

belongs to the class of NP-complete

problems, for which no one has yet found

any polynomial time algorithms.

Beer and others [4] have shown that problem

(2) remains NP-complete, even if the entry of

the algorithm consists of a fixed relations

(matrix) instead of a relational schema. In

[40] Lucchesi and Osborn have shown that

the problem of the cardinality of the key is

polynomial convertible towards the prime

attribute problem. So, if NP≠P, then the

transformation is not possible for the

relations.

The keys represent a class of constraints,

which is of great importance for maintaining

the database in a consistent state. Currently,

there are two competing approaches in

defining keys. These are the natural keys and

the surrogate keys.

A natural key is a candidate key, which

represents a logical link of a subset of

attributes of a relational scheme. The

existence of a natural key is known to the

users and to business. This may consist of

several attributes, although there are

numerous examples of natural keys formed

of a single attribute.

The main disadvantage is the susceptibility

of natural keys to modifications in both the

value and structure. Changing the structure of

a natural key usually involves serious

problems in the database and in maintaining

applications, because the modification has to

be applied in several places. Consequently,

the use of natural keys as primary keys is

often challenged in the industry.

A surrogate key is a single attribute whose

values are (1) numeric, (2) generated by the

system and (3) utilized to uniquely identify

tuples in a relation. Their existence and their

values are invisible to users.

A perceived advantage in the use of surrogate

keys as primary keys consists in their

immutability, which is a consequence of their

separation from the businesses logic. E.F.

Codd in [14] has defined the surrogate keys

as an architecture of the relational database.

Each relational scheme has a surrogate

attribute as primary key. Primary surrogate

keys are propagated to other relations as

foreign keys.

Wastl in [62] introduces an inference system

to obtain the keys of a relational scheme.

Entities derived with this system are

functional dependencies. The system is

closed, meaning that all functional

dependencies that are obtained with it, are in

logical sequence. The system is complete,

meaning that for each key of the scheme it

represents a functional dependency that can

be derived. The completeness of the system

was used for bounding the cardinality of the

set of keys of the scheme, with the value

 eF
e

/
, where || F represents the number of

functional dependencies defined on the

scheme.

In [56] it is shown that the number of keys of

a relational schema is bounded by

2

n
n

,

where n is the number of attributes of the

scheme. It should be noted that the

estimation depends on the number of

attributes, and in [62] – on the number of

functional dependencies defined over the

schema. This is an essential difference.

The idea proposed in [39] is to build, based

on canonical or minimum covers for a set of

dependencies, of a matrix, called MAC,

which facilitates the calculation of closures

of all sets of attributes. Using this matrix, it is

proposed a fast calculation algorithm of the

closure of a set of attributes, fact which

improves the search of keys. The improved

algorithm of finding keys does not need to

calculate the closure of the subsets which are

tightly relevant for the keys, and namely,

which are keys or a part of keys. Based on

this algorithm and on the theorem of

reference from [25], the efficient algorithm

for finding all the keys has the complexity

)||*||*(2FRnO , where || R represents the

number of attributes of the scheme, and || F

- the number of functional dependencies

defined over the scheme.

Informatica Economică vol. 16, no. 1/2012 21

6 Issues and benchmarks for analysis and

testing of relational schemes

One category of problems that may arise in

the development of certain applications using

a database, is that of an incorrect design of

relational schemas. Testing the correctness of

a scheme can be made using functional

dependencies (or of other type of constraints)

attached to that scheme.

More decision making problems related to

relational schemes with functional

dependencies are difficult to calculate. Such

problems include the prime attribute problem

as well as the testing whether a scheme is in

a certain normal form. The algorithms for

these problems are necessary for the tools of

databases’ design. But these problems, for

the time being, can be solved only by

algorithms of exponential complexity.

Although the size of the instances is usually

given by a set of attributes and, therefore, is

quite small, such algorithms cannot be

utilized for all design tasks.

Testing if a relational schema is in BCNF is

an easy problem. In fact, it should be tested

for all dependencies defined over the scheme,

if their left parties are super-keys [46]. This

is clearly made in polynomial time, in

contrast to testing if the schema is in 3NF,

which is NP-complete task, because the

testing of prime attributes is NP-complete

[40].

It should be noted that the first statement is

correct, only if the given set of dependencies

is an exhaustive one. In case it does not

represent the closure of the set of

dependencies, the problem is of an

exponential character.

Although the testing of the BCNF, if the

above condition is satisfied, is executable in

polynomial time, to detect whether a sub-

scheme of the scheme is in this form, it is an

NP-complete problem [6]. The reason of

complexity increase lies in the following. For

the Boyce-Codd problem is given the

relational schema. In other words, the set of

functional dependencies is part of the input.

And it just remains to be tested if the left side

of each dependency is super-key. But in the

case of a subschema the set is not explicitly

known.

Worland [63] presents an algorithm that

determines whether a scheme is in 3NF. The

algorithm operates, classifying the attributes

of the schema in the so-called dependent sets,

which are based on the set of functional

dependencies defined over the given scheme.

To view the dependencies, a new type of

graph of dependencies is introduced. The

algorithm works faster than the algorithms

designed for finding all candidate keys of the

scheme, especially if there is more than a

dependent set.

Obviously the question arises if, for

recognition of the normal form of a scheme,

it is essential to determine the prime and

nonprime attributes or the determination of

all keys. A solution would be to determine

the equivalent features of these entities, but

which could be calculated in polynomial

time.

7 Criteria for recognition of acyclic

database schemas

Hypergraphs generalize the notion of graph,

introducing the notion of hyperedge of the

graphs, by extending the notion of the edge

of the graphs, non-imposing restrictions on

the number of nodes belonging to an edge.

This relaxation of the constraint on the

number of nodes allows generalization of

results of the graphs theory and the study of

specific classes of hyper-graphs. Hyper-

graphs are therefore preferred to graphs due

to the higher generality. However, this

flexibility is not only one facet of a medal,

the other side can be the increase of

algorithms’ complexity defined over the

hyper-graphs, in comparison with those

which are applied to the graphs.

A special interest for the theory and practice

of database design is represented by acyclic

hyper-graphs.

Acyclic hyper-graphs were introduced in

hyper-graphs same as the trees are a special

case of graphs [7]. Besides representing an

interesting mathematical structure, the

acyclic hyper-graphs are a fundamental

element in the study of database theory and

22 Informatica Economică vol. 16, no. 1/2012

of constraints’ satisfaction. However, unlike

regular non-oriented graphs, there exist a

range of nonequivalent notions of acyclicity

of hyper-graphs.

The database schemas can be viewed as

hyper-graphs with individual relational

schemes corresponding to the edges of a

hyper-graph. There is a natural bijection

between database schemas and hyper-graphs,

where each attribute of a database schema

corresponds to a node in a hyper-graph and

each relation scheme corresponds to an edge

in the hyper-graph.

Under this setting, a new class of database

schemas, called acyclic, was introduced and

proved that it claims a number of desirable

properties. Of particular interest among these

are the , and acyclicity levels each

characterizing an equivalence class of

properties for the database schemas,

represented by hyper-graphs.

Acyclic database schemas (corresponding to

acyclic hyper-graphs) were first studied by

Beer and others [3]. This natural class of

database schemas has proved to possess

important and desirable properties [3, 30, 27,

5, 26]. Acyclic hyper-graphs have become a

subject of many researches.

One of the main reasons regarding the

opportunity of using the acyclic database

schemas is that there are important problems

that are NP-hard regarding the general

database schemas, but which become

solvable in polynomial time when they are

limited to acyclic instances. Examples of

such problems include:

 Determining the global consistency [5];

 Evaluation of conjunctive queries [64];

 Calculation of joins or projections of joins

[64].

In addition, the acyclic schemes of databases

can be recognized in linear time [54]. D'Atri

and Moscarini [22] have offered a recursive

algorithm of pruning to determine the

acyclicity level of the hyper-graph.

When such problems of difficult computation

occur that have to be solved on a general

schema of the database, it is natural to

decompose it into α-acyclic instances, on

which efficient algorithms can be applied.

This has motivated some recent studies on α-

arborescence of hyper-graphs, the minimum

number of α-acyclic hyper-graphs in which

the edges of the given hyper-graph can be

partitioned [61, 13]. The main contributions

are brought to asymptotic determination of

the arborescence of a completely uniform

hyper-graph with a large size of the edge [8].

Grohe and others [34] have shown that the

evaluation of conjunctive queries with the

width of the bounded tree is treatable.

Decision making issues such as evaluation of

Boolean conjunctive queries and query

content are solvable for acyclic queries [32,

31].

A number of other properties have been

identified that have been studied by a few

researchers in quite different contexts, and

every of these properties are equivalent with

the acyclicity. Thus, the class of acyclic

database schemas is a natural class, an

important one, as it can be characterized in a

number of ways, each corresponding to a

desirable property of the database schema or

to a natural property of the graphs theory.

As known, there exist various undesirable

and pathological phenomena that may occur

in the general schemes of the database, but

not in the acyclic databases schemas. So, by

directing attention to the case of acyclic

schemas, the theory is much more elegant. In

addition, this restriction has the property [27]

that acyclic database schemas are sufficiently

general to comprise the biggest number of

situations of the “real world”.

At least the database designers should be

aware of existence of acyclicity and strive to

utilize it. Given the circumstances, it results

that, by focusing on acyclic cases,

researchers can develop a strong and stylish

theory which often are applied to schemas

that represent the domain of interest for

which the database is built.

For acyclic schemes the algorithms are

efficient, polynomial time, while for

nonrestrictive cases the problems are part of

NP-complete class. One example is to

determine the global consistency. Other

examples are presented by Yannakakis [64].

In addition, the determination of acyclicity

Informatica Economică vol. 16, no. 1/2012 23

degree may be achieved by a simple

algorithm.

There exist various interesting problems

related to relational databases, in the case

when a certain type of object can be viewed

as a collection of sets, and a property of the

object depends on the structure of this set.

Now, a collection of sets can be viewed as a

hyper-graph. It seems that, for various

properties, the acyclicity of a hyper-graph is

equivalent to the validity of these properties.

Such properties appear in (at least) three

distinct areas.

The first field appears when a database

schema is treated as a collection of sets of

attributes. Certain properties of relational

databases are discussed [5] that depend on

the structure of the schema. For example,

such a property refers to the fact that, if the

database on a schema is pair-wise consistent,

then it is totally consistent.

A second area is the theory of dependencies.

One of the most important types of

dependencies is the join dependency, which

can be viewed as a collection of sets. The

desirable property here consists in the fact

that the join dependency is logically

equivalent with a set of binary join

dependencies, i.e. with a set of multi-valued

dependencies.

A third area pertains to queries processing.

Here, join expressions are of great

importance, and these, again, [28, 2] are

collections of sets. Interesting problems

relate to the existence of a few access paths

in efficient time and/or efficient space. All

these problems of distinct areas are linked by

the conditions of acyclicity over the structure

of the hyper-graph.

Obviously, in order to describe all these

problems, there are presented a series of

definitions and new constructions and a

number of conditions which are proved to be

equivalent to the acyclicity. Here needs to be

emphasized that there are various types of

acyclicity [26] for hyper-graphs, and

consequently for the database schemas.

In this way, are described the features for a

set of multi-valued dependencies to be a

consequence of a join dependency. Also, the

conflict-free sets of multi-valued

dependencies can be characterized [12]. For

example, it is shown that an acyclic join

dependency with n relation schemes is

equivalent to a set of at least 1n conflict-

free multi-valued dependencies. This fact

strengthens the result of [27], which says that

any acyclic join dependency is equivalent to

a set of multi-valued dependencies the size of

which is polynomial in relation with the size

of the join dependency.

In the paper [38] were presented

complementary approaches for the design of

 acyclic databases schemas. Lakshmanan

has introduced a new concept called

“independent cycle.” Based on this is

developed a criterion for acyclicity,

which is equivalent to the existing definitions

of acyclicity. From this, as well as from

the concept of the dual hyper-graph, there

can be developed an efficient algorithm for

testing the acyclicity.

Because of the fact that various degrees of

acyclicity of the schemas has various

properties of the databases [19] the

development of certain equivalent conditions

for the existence of acyclic database schemas

are welcomed, in general, and the

determination of the most efficient algorithm

for testing the acyclicity, in particular.

This is motivated by the fact that for a

acyclicity schema, any subschema is also

 acyclic, thus allowing every user to

benefit from the qualities of the database

schema.

Apart from this, it is useful to study Berge-

acyclic schemas for the case when the hyper-

graph consists of several strongly connected

components.

8 Conclusions

It can be concluded that designing a good

database schema is more an art than a

science. In the last two decades, there have

been achieved many scientific advances in

the logical database design, while this cannot

be affirmed about the other phases. However,

it cannot be stated that the logical design

process can be automated. It is only the

24 Informatica Economică vol. 16, no. 1/2012

beginning of the way. There exists a range of

issues not yet resolved. Many of the known

algorithms are of exponential complexity and

cannot be applied in practice. The process of

analysis of the existent database features is

extremely modestly studied.

In addition, most methods used in database

design are, in fact, empirical solutions, often,

unsupported by any scientific basis or any

engineering discipline. The ad hoc design

methods, often, lead to inflexible solutions

that do not meet the business requirements.

Costly remedial measures often cause more

delays in operation, without any tangible

improvement. Many design tools are

presented in the form of individual analyses.

Although these analyses provide valuable

information, they, however, can hardly be an

adequate substitute to a discipline or a

systematic design tool.

References

[1] W.W. Armstrong, “Dependency

Structures of Data Base Relationships”,

IFIP Gong., Geneva, Switzerland, pp.

580-583, 1974.

[2] A. Giorgio, A. D'Atri and M. Moscarini,

“On the Existence of Acyclic Views in a

Database Scheme”, Theor. Comput. Sci.,

V.35, pp.165-177, 1985.

[3] C. Beeri, R. Fagin, D. Maier, A.O.

Mendelzon, J.D. Ullman and M.

Yannakakis, “Properties of acyclic

database schemes”, in Proc. ACM STOC

(Milwaukee, Wisc., May 11-13, 1981),

ACM, New York, pp.355-362, 1981.

[4] C. Beeri, M. Dowd, R. Fagin and R.

Statman, “On the Structure of Armstrong

Relations for Functional Dependencies”,

Journal of the ACM, V.31, N.1, pp.30-46,

Jan. 1984.

[5] C. Beeri, R. Fagin, D. Maier and M.

Yannakakis, “On the Desirability of

Acyclic Database Schemes”, J.

Assoc.Comput., V.30 N.3, pp. 479-513,

Mach., 1983.

[6] C. Beeri and A. P. Bernstein,

“Computational problems related to the

design of normal form relational

schemas”, ACM Trans. Database Syst.,

V.4, N 1, pp.30-59, 1979.

[7] C. Berge, “Graphs and hypergraphs”, 2.,

rev. Ed, North-Holland Publ. Co.,

Amsterdam, xiv,528 p, 1976.

[8] J.-C. Bermond, Y. M. Chee, N. Cohen

and X. Zhang, “The α-arboricity of

complete uniform hypergraphs”, SIAM J.

Discrete Math. V.25, N.2, pp. 600–610,

2011.

[9] P. A. Bernstein, “Normalization and

Functional Dependencies in the

Relational Data Base Model”, Ph.D.

Thesis, Dept. of Comp. Sci., Univ. of

Toronto, Toronto, 119p, 1975.

[10] P. A. Bernstein, “Synthesizing Third

Normal Form Relations from Functional

Dependencies”, ACM Trans. Database

Syst., V.1, N 4, pp.277-298, 1976.

[11] P. Beynon-Davies, “Database systems”,

3rd Edition, Palgrave-Macmillan, 616 p,

2004.

[12] K. Chase, “Join graphs and acyclic data

base schemas”, in Proc. of the

International Conf. on Very Large

Databases (VLDB '81) (Cannes, France),

pp.95-100, 1981.

[13] Y. M. Chee, J. Lijun, A. Lim and K. H.

Tung Anthony, “Arboricity: An Acyclic

Hypergraph Decomposition Problem

Motivated by Database Theory”, Preprint

submitted to Discrete Applied

Mathematics, 11p, 2011.

[14] E.F. Codd, “Extending the Relational

Data Model to Capture More Meaning”,

ACM TODS, V.4, N.4, pp.397-434, 1979.

[15] E.F. Codd, “A Relational Model of Data

for Large Shared Data Banks”, Comm, of

ACM, V.13, N6, pp. 77-387, 1970.

[16] E.F. Codd, “Further Normalization of

the Database Relational Model”, in Data

Base Systems, Courent Comp.Sci.

Symposia Series, 6, Englewood Cliffs,

NJ: Prentice-Hall, Rustin, pp.33-64,

1972.

[17] E.F. Codd, “Recent Investigation in

Relation Data Base Systems”, IFIP

Congress, pp.1017-1021, 1974.

[18] M. T. Connolly and C. E. Begg,

“Database systems: a practical approach

http://www.sigmod.org/dblp/db/conf/ifip/ifip74.html#Codd74
http://www.sigmod.org/dblp/db/conf/ifip/ifip74.html#Codd74

Informatica Economică vol. 16, no. 1/2012 25

to [17] design, implementation, and

management”, Fourth Edition, Addison-

Wesley, 1374p, 2005.

[19] V. Cotelea, “Modele şi algoritmi de

proiectare logică a bazelor de date”,

Editura ASEM, Chişinău, 266 p, 2009.

[20] C. J. Date and H. Darwen, “Databases,

Types, and the Relational Model. The

Third Manifesto”, Addison Wesley; 3th

edition, 572 p, 2006.

[21] C. Date and R. Fagin, “Simple

Conditions for Guaranteeing Higher

Normal Forms in Relational Databases

Design”, ACM Transactions on Database

Systems, V.17, N.3, pp.465-476, 1992.

[22] A. D'Atri and M. Moscarini, “Acyclic

hypergraphs: their recognition and top-

down vs bottom-up generation”,

Technical Report R.29, Consiglio

Nazionale Delle Ricerche, Instituto di

Analisi dei Sistemi ed Informatica. pp.

82–94, 1982.

[23] C. Delobel and R.G. Casey,

“Decomposition of a Data Base and the

Theory of Boolean Switching functions”,

IBM Jour. of Res. and Develop., V.17,

N5, pp.374-386, 1973.

[24] R. Elmasri and S. B. Navathe,

“Fundamentals of Database Systems”,

Addison-Wesley Publishing Company,

5th edition, 1168 p, 2006.

[25] R. Fadous and J. Forsyth, “Finding

candidate keys for relational data bases”,

in Proc. of the ACM SIGMOD

International Conference Management of

Data, ACM Press, pp.203-210, 1975.

[26] R. Fagin, “Degrees of acyclicity for

hypergraphs and relational database

schemes”, J. Assoc. Comput. Mach.,

V.30, N.3, pp.514-550, 1983.

[27] R. Fagin, A. Mendelzon and J.D.

Ullman, “A Simplified Universal

Relation. Assumption and Its Properties”,

ACM Trans. on Database Systems, V.7,

N.3, pp.343-360, 1982.

[28] R. Fagin, “Acyclic database schemes (of

various degrees): a painless introduction”,

Lect. Notes Comput. Sci., Nr. 159, pp. 65-

89, 1983.

[29] M.C. Fernandes, “Determining the

normalization level of a relation on the

basis of Armstrong’s axiom”, Computer

an Artificial Intelligence, V.3, N.6,

pp.495-504, 1984.

[30] N. Goodman and O. Shmueli, “Syntactic

Characterization of Tree Database

Schemas”, J. ACM, V.30, N.4, pp.767-

786, 1983.

[31] G. Gottlob, N. Leone and F. Scarcello,

“Hypertree decompositions and tractable

queries”, Journal of Computer and

System Sciences. V.64, N.3, pp.579-627,

2002.

[32] G. Gottlob, N. Leone and F. Scarcello,

“The Complexity of Acyclic Conjunctive

Queries”, Journal of the ACM, V.43, N.3,

, pp. 431–498, 2001.

[33] G. Gottlob, “On the size of

nonredundant FD-covers”, Information

Processing Letters, V.24, N.6, pp.355-

360, 1987.

[34] M. Grohe, T. Schwentick and L.

Segoufin, “When is the evaluation of

conjunctive queries tractable?”, in

Proc.ACM Symposium on Theory of

Computing. pp.657–666, 2001.

[35] S. Hartmann and S. Link, “The

implication problem of functional

dependencies in complex-value

databases”, Electronic Notes in

Theoretical Computer Science (ENTCS),

V.123, pp.125-137, 2005.

[36] M. Kifer, A. Bernstein and P. M. Lewis,

“Database Systems: An Application-

Oriented Approach”, Addison-Wesley,

Boston, MA, Second edition, 1272 p,

2006.

[37] H. Koehler, “Finding faithful Boyce-

Codd Normal Form decompositions”,

Algorithmic Aspects in Information and

Management (AAIM), Lecture Notes in

Computer Science, Springer, V.4041,

pp.102-113, 2006.

[38] V.S. Lakshmanan, N. Chandrasekaran,

C.E. Veni Madhavan, “Recognition and

top-down generation of β-ciclic acyclic

database schemes”, Lect. Notes. Comput.

Sci., V.181, pp.344-366, 1984.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Moscarini:Marina.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goodman:Nathan.html

26 Informatica Economică vol. 16, no. 1/2012

[39] H. Li and L. Zhou., “Use closure of

relevant sets of attributes to efficiently

find candidate keys”, in Proc.

International Conference on Computer

Science and Software Engineering, CSSE

2008, V.1: Artificial Intelligence,

December 12-14, IEEE Computer

Society, Wuhan, China. pp.237-242,

2008.

[40] C.L. Lucchesi, S.L. Osborn , “Candidate

keys for relations”, Jour. Of Comput. And

Syst. Sci., N.17, pp.270-279, 1978.

[41] D. Maier, “The theory of relational

database”. Computer Science Press, 637p,

1983.

[42] D. Maier, “Minimum cover in the

relational database model”, Jour. Of

ACM, V.27, N.4, pp.664-674, 1980.

[43] J. Makowsky, E. Ravve, “Dependency

Preserving Refinements and the

Fundamental Problem of Database

Design”, Data and Knowledge

Engineering, V.24, N.3, pp.277-312,

1998.

[44] H. Mannila and K.J. Räihä, “On the

relationship of minimum and optimum

covers for a set of functional

dependencies”, Acta Informatica, V.20,

pp.143-158, 1983.

[45] H. Mannila, K.J. Raiha, “The Design of

Relational Databases”, Addison-Wesley,

xii, 318 p, 1992.

[46] S.L. Osborn, “Testing for Existance of a

Covering Boyce-Codd Normal Form”,

Information Processing Letters, V.8, N.1,

pp.11-14, 1979.

[47] M.T. Özsu and P. Valduriez, “Principles

of Distributed Database Systems”, ed.

Dorling Kindersley (India) Pvt Ltd, 720p,

2006.

[48] J. Paredaens, P. De Bra, M. Gyssens and

D. Van, “The Structure of the Relational

Database Model”, EATCS Monographs

on Theoretical Computer Science. W.

Brauer, G. Rozenberg, A. Salomaa, eds.,

SpringerVerlag, V.17, 231 p, 1989.

[49] R. Ramakrishnan and J. Gehrke,

“Database Management Systems”,

McGraw Hill Higer Education, 906 p,

2000.

[50] A. Silberschatz, H.F. Korth and S.

Sudarshan, “Database System Concepts”,

Sixth Edition, McGraw-Hill, 1376 p,

2010.

[51] A.M. Silva and M.A. Melkanoff, “A

method for helping discover the

dependencies of a relation”, Advances in

Data Base Theory, V.1, Gallaire H.,

Minker J.,. Nicolas J.M (eds.), Plenum

Press, pp.115-133. 1981.

[52] S. Sumathi and S. Esakkirajan,

“Fundamentals of Relational Database

Management Systems”, Springer-Verlag

Berlin and Heidelberg GmbH & Co. K.

776 p, 2007.

[53] R. Taouil and Y. Bastide, “Computing

proper implications”, in ICCS-2001

International Workshop on Concept

Lattice-Based Theory, Methods and

Tools for Knowledge Discovery in

Databases, Lecture Notes in Computer

Science, Palo Alto, CA, USA, Springer,

pp.49–61, 2001.

[54] R.E. Tarjan and M. Yannakakis,

“Simple linear-time algorithms to test

chordality of graphs, test acyclicity of

hypergraphs, and selectively reduce

acyclic hypergraphs”, SIAM J. Comput.,

V.13, pp.566-579, 1984.

[55] B. Thalheim, “A survey on database

constraints”, Reine Informatik, I-8/1994,

Fakultat fur Mathematik,

Naturwissenschsften und Informatik, 23

p, 1994.

[56] B. Thalheim, “On the number of keys in

relational and nested relational

databases”, Discrete Applied

Mathematics, V.40, pp.265-282, 1992.

[57] J.D. Ullman, “Principles of Database

Systems”, Computer Science Press, New

York, N. Y., Second edition, 485 p, 1982.

[58] J.D. Ullman, “Principles of Database

and Knowledge-Base Systems”, Vol. II:

“The New Technologies”, Spektrum

Akademischer Verlag, 511 p, 1990.

[59] J.D. Ullman, “Principles of Database

and Knowledge-Base Systems”, Vol. I:

“Classical Database Systems”, Computer

Science Press, Rockville, MD, 631 p,

1990.

http://www.springerlink.com/content/?Author=Heikki+Mannila

Informatica Economică vol. 16, no. 1/2012 27

[60] W. Vincent and B. Srinivasan, “A Note

on Relation Schemes which are in 3NF

but not in BCNF”, Information

Processing Letters, V.48, N.6, pp.281-

283, 1993.

[61] J. Wang, “The Information Hypergraph

Theory”, Science Press, Beijing, 162p,

2008.

[62] R. Wastl, “On the Number of Keys of a

Relational Database Schema”, Journal of

Universal Computer Science, V.4, N.5,

pp.547-559, 1998.

[63] P. B. Worland, “An efficient algorithm

for 3NF determination”, Information

Science, V.167, N.1-4, pp.177-192, 2004.

[64] M. Yannakakis, “Algorithms for acyclic

database schemes”, in Proc. of the

International Conf. on Very Large

Databases (VLDB '81) (Cannes, France),

pp.82–94, 1981.

[65] С.Д. Кузнецов, “Основы баз данных”,

2-е изд.,испр., Москва, БИНОМ, 484 с,

2007.

Vitalie COTELEA is Associate Professor at Faculty of Cybernetics,

Statistics and Economic Informatics from the Academy of Economic

Studies of Moldova. He is the author and co-author over 90 scientific works,

including one monograph and more than 10 books. His work focuses on

Databases and Information Systems Design and Declarative Programming.

He has graduated the Faculty of Mathematics and Cybernetics in 1974 of

State University of Moldova, Chisinau. He holds a PhD diploma in

Computer Science from 1988 of Kiev State University, Ukraine.

