
Informatica Economică vol. 16, no. 1/2012 5

Evaluating Software Complexity Based on Decision Coverage

Mustafa AL-HAJJAJI, Izzat ALSMADI, Samer SAMARAH

Department of Computer Information Systems, Yarmouk University, Irbed, Jordan

mustapha5_51@yahoo.com, ialsmadi@yu.edu.jo, samers@yu.edu.jo

It is becoming increasingly difficult to ignore the complexity of software products. Software

metrics are proposed to help show indications for quality, size, complexity, etc. of software

products. In this paper, software metrics related to complexity are developed and evaluated.

A dataset of many open source projects is built to assess the value of the developed metrics.

Comparisons and correlations are conducted among the different tested projects. A classifica-

tion is proposed to classify software code into different levels of complexity. The results

showed that measuring the complexity of software products based on decision coverage gives

a significant indicator of degree of complexity of those software products. However, such in-

dicator is not exclusive as there are many other complexity indicators that can be measured

in software products. In addition, we conducted a comparison among several available metric

tools that can collect software complexity metrics. Results among those different tools were

not consistent. Such comparison shows the need to have a unified standard for measuring and

collecting complexity attributes.

Keywords: Complexity, Software Metrics, Decision Coverage, Software Quality, Testing

Introduction

In recent years, the software products are

getting more complex. Producing a software

with all its functionalities while at the same

time having high quality attribute is a serious

challenge. Improving software testing and

measurements can help in findings software

bugs early and hence reduce their impact [1].

However, it is very difficult to test every as-

pect or attribute in the software, especially

when the software application is very huge

and has many branches. There are several

metrics that have been developed to help de-

velopers and testers in their development

process in order to guarantee the correctness

of tasks and improving the maintainability of

the software [2], [3], [4], [5]. Cyclomatic

complexity is one of metrics that is used to

measure the complexity of a program by

measuring the number of linearly independ-

ent paths through the source code [6]. Cy-

clomatic complexity is computed using the

Control Flow Graph (CFG). In CFG, there

are nodes and directed edges. The nodes refer

to commands or decisions in the program and

each edge connects two nodes (i.e. com-

mands) when the second command can be

executed after the first one.

In this paper, measuring the complexity will

be based on decision coverage. Decision

coverage is a metric that measures the possi-

ble branches that are followed by a flow con-

trol structure [7]. A decision is a program

point in which the control flow has two or

more alternative branches [8]. Decision cov-

erage is the percentage of the decision out-

comes that have been tested or visited by test

cases relative to the overall decisions [7].

The decision coverage metric will be added

to the existing metrics in SWMetrics tool de-

veloped by one of the paper’s authors [13].

SWMetrics computes many metrics such as:

Line of Code (LOC), Statement Line of Code

(SLOC), Cyclomatic complexity and math

counts. The objective of decision coverage

testing is to show all the decisions within a

component that have been executed at least

once. This is usually a software complexity

indicator where more decisions in a program

mean more complexity. The remainder of

this paper is structured as follows: Section 2

presents a background of software metrics.

Section 3 discusses some of the metrics that

proposed to measure some features of soft-

ware, especially complexity. Some tools that

can calculate software metrics have also been

discussed in this section. Section 4 presents

1

mailto:mustapha5_51@yahoo.com
mailto:ialsmadi@yu.edu.jo
mailto:samers@yu.edu.jo

6 Informatica Economică vol. 16, no. 1/2012

the setup of our experiments. Section 5 de-

scribes the experimental results. Section 6 in-

cludes a conclusion or summary of the work

presented in this paper.

2 Background

Software metrics provide a numerical data

related to development, operation, and

maintenance of the software product, project,

process, etc. The metrics help the developers

evaluate the attributes of software in an ob-

jective manner by giving them numerical

figures to compare different software prod-

ucts with each other. Moreover, the metrics

can help to get better management results.

Generally, software metrics can be classified

into three main classes: process, product, and

project metrics [9]. Process metrics are relat-

ed to enhancing the software development

process. For example, the response time of

fixing a problem. Product metrics are related

to the characteristics of a product like com-

plexity and size. Project metrics explain the

project features and execution. This may in-

clude: the number of software developers,

cost, and timetable [9]. In this research, the

focus will be on the product metrics, particu-

larity, complexity related metrics.

The community of software engineering has

not consented upon a set of metrics. As a re-

sult, many developers have come up with di-

verse ways to measure the software attrib-

utes. One of the most important metrics is the

complexity which is supposed to be an indi-

cator of: correctness, clarity, and effective-

ness of the software. In addition, it can pro-

vide a good estimation for the cost, efforts,

the number of faults, cost of testing, etc. Sev-

eral metrics have been proposed to measure

the complexity of a program. Examples of

software product complexity metrics include:

Cyclomatic complexity, depth of inheritance,

information flow (fan-in. fan-out], etc. The

aim of this paper is to measure the complexi-

ty of the software based on Decision Cover-

age (DC). Furthermore, the relation between

the complexity and other metrics will be

studied. In addition, we can decide the best

tool that can measure the complexity.

3 Literature Review
A considerable amount of literature has been

published on software metrics; and obviously

measuring the complexity of the program is

one of these metrics. In this section, first of

all, the metrics which are related to the com-

plexity metric will be reviewed. The tools

that have been developed to measure the

complexity of programs will then be dis-

cussed.

3.1 Software Metrics
This section provides a definition of metrics

that can help in measuring the complexity of

programs. They have been selected based on

the least common denominator. The first one

is the metric of: Lines of Code (LOC). As

the name indicates, LOC metric shows how

many lines of source code are in the applica-

tion, namespace, class or method. Four as-

pects have been considered to deal with LOC

metric: blank lines, comment lines, data dec-

larations, lines that include several instruc-

tions [12].Another accepted line of code met-

ric is the one implemented by [13], which is

called Non-Commented LOC (NCLOC). In

this implementation, comment and blank

lines are eliminated. Thus, the metric will

give the right value of the

size of the program, because the blank and

comment lines are not used by the software.

LOC can be used practically as follows:

check the size of code module, and estimate

the effort in development and maintenance

process.

Coupling Between Objects (CBO): CBO is

the number of other classes that are coupled

with a specific class [11]. According to [4],

the CBO can be defined as the measure of the

strength of the established by a connection

from one unit to another.

Depth of Inheritance Tree (DIT): DIT is

the maximum inheritance path from the class

to the root class [11]. When a child class in-

herits from one parent, it’s called “single in-

heritance”. And when a child class inherits

from more than one parent, it’s called “mul-

tiple inheritances” which is more complex

than a single inheritance. Inheritance increas-

es the efficiency by reducing the redundancy

Informatica Economică vol. 16, no. 1/2012 7

[15]. In contrast, the deeper hierarchy inher-

itance, the harder it is to understand the code.

Number of Children (NOC): NOC is the

number of immediate subclasses subordinat-

ed to a class hierarchy [11]. The number of

children indicates the level of reuse in a sys-

tem. Moreover, it indicates the testing level is

required. If a class has a large number of sub-

classes, it is probably an improper abstraction

of the parent class. A system has a lot of

child classes, will be hard to understand.

Lack of Cohesion in Methods (LCOM):

According to [14], cohesion of a class is de-

fined by how closely the local method is re-

lated to the local variable. A high LCOM

value could indicate that the design of the

class is poor and it may be a good idea to

split the class into two or more sub-classes

[11]. The authors in [16] redefined the

LCOM using a graph and they consider it as

the number of connected components of a

graph.

Response For a Class (RFC): RFC is the

number of methods which can be executed in

response to a message received by an object

of a class [11].

Weight Methods per Class (WMC): WMC

is the sum of weights for the methods of a

class [11].

3.2 Tools

In this section, many software metric tools

will be discussed. Each one of these tools

calculates several possible metrics.

C and C++ Code Counter (CCCC): CCCC

is an open source tool, developed as a testing

ground to generate reports on various metrics

such as LOC, McCabe’s complexity and met-

rics proposed by Chidamber and Kemerer

[11]. It deals with C++ and Java files[17].

Analyst4j: Analyst4j is a commercial tool

works based on Eclipse platform as well as

stand-alone [18]. It provides Java code search

by using software metrics. Furthermore, it

provides an environment to analyze code

quality metrics and give visualization for

metrics using graph/charts. [18]

Dependency Finder: Dependency finder is a

free open source tool. This tool is used in an-

alyzing compiled Java code. Basically, it is a

dependency program that extracts dependen-

cy graphs and mines them for useful infor-

mation [19].

Java Coding Standard Checker (JCSC):

JCSC is a powerful tool used to examine a

source code against a definable coding stand-

ard and potential bad code [20]. JCSC sup-

ports several metrics such as non-

commenting source statement (NCSS) and

Cyclomatic Complexity Number (CNN).

Chidamber and Kemerer Java Metrics

(CKJM): CKJM is an open source command

line tool that calculates also CK metrics from

Java programs. The metrics proposed by CK

are WMC, DIT, NOC, RFC, CBO, and

LCOM[21].

OOMeter: OOMeter is an experimental met-

ric tool developed by the authors in [22]. It is

used to measure the quality attributes of Java

and C# source code and UML models.

OOMeter supports many metrics such as

WMC, DIT, NOC, CBO, RFC, RFC, and

LOC.

Understand for Java:Understand tool for

Java is a commercial tool used to calculate

several code metrics [24].Many metrics are

supported by this tool such as: Cyclomatic

complexity, max inheritance, weighted

methods per class, number of instance meth-

ods, and class coupling [25].

SWMetrics tool: SWMetrics is a tool used

for a specific company as part of a master

project. Besides LOC abdCyclomatic com-

plexity, the tool collects metrics related to

complexity that include: SLOC, Maximum

nesting, Cyclomatic complexity, and Math

counts [10].

4 Methodology

The methodology consists of three main

parts: implementation of the proposed metric,

classes and projects classification, and the

comparison among tools. The first one in-

cludes the implementation of the complexity

metric based on decision coverage using C#

language. The implementation will be added

to the SWMetrics tool. Later one, data min-

ing classification methods will be used based

on the output of SWMetrics tool, especially

8 Informatica Economică vol. 16, no. 1/2012

on the attributes of: the decision coverage,

LOC and decision coverage with LOC.

1) Decision Coverage Metric Implementa-

tion Phase

SWMetrics can calculate Cyclomatic com-

plexity, max nesting, and the number of op-

erations. These metrics can indicate the de-

gree of the complexity of given software. In

our paper, we will add a new measure which

can help further measuring the complexity.

The parser of the tool, which is written in C#

language, will then be modified. Further-

more, the new measure will appear in the in-

terface of the SWMetrics tool. In this section,

we explain the code modification of the tool.

Decision Coverage evaluation is based on the

number of decisions in the code. There are

certain keywords in programming languages

that are indicators of decisions. These words

include: if, for, while, switch, select case, do,

try, catch, finally, etc.

In the implementation phase, the decision

coverage is calculated with exception han-

dling and without exception handling. We

did it on purpose, because some opinions

such as those mentioned in [23] assumed that

a single level of exception will improve the

software by making it more robust without

affecting the degree of the complexity of that

system. If the exception handling has more

than one level or more than one level of ex-

ception in a class, the complexity of software

will increase. In this study, we will assume

that the iteration loop increases the complexi-

ty of the software by 3. Many authors pro-

posed 3 as a weight for the loop [26]. They

also increased the weight of the sequence

statement by 1. However, this is ignored in

our study because the focus in this paper is

on code decisions only. The others keywords

such as: if, else, switch, case, try, catch, fi-

nally, etc. increments complexity by 1.

2) Classification phase

In this phase, three columns will be added to

SWMetrics. First, we will classify the clas-

ses, based on LOC, into three categories

(low, medium, and high). Second, the clas-

ses will be classified, based on DC, into three

categories (low, medium, and high). Finally,

we will classify the classes, based on LOC

and DC, into five categories (very low, low,

medium, high, and very high). As we classi-

fied the classes, we will do the same for the

software products. We will classify the set of

software products based on LOC, DC, and

LOC with DC. The classification process will

be done automatically by implementing the

classification process in SWMetrics.

3) Tools comparison and the case study

We will conduct a comparison study between

SWMetrics and several selected software

metric tools.

More than 70 open software projects are used

to conduct the comparison and the analysis

study. Most of metric-tools selected support

Java based programs. SWMetrics tool is de-

veloped to deal with several types of code in-

cluding Java, C++, and C#. However, since

most of those tools used for comparison can

only evaluate Java codes, the case study pro-

jects were selected from Java open source

references (e.g. sourceforge).

The first criteria were to collect the software

metrics tool that calculate metrics and can

indicate the degree of the complexity of

software. 14 different metric tools were se-

lected. The majority of the software metric

tools evaluated support metrics for Java pro-

grams.

As we mentioned in the literature review, we

select the metrics based on the “least com-

mon denominator”. A large list of metrics

was created. We had to refine these metrics;

since there are many metrics that have differ-

ent names in different tools but they are re-

lated to the same topic. Table 1 shows the

metrics and the tools that are used in the

evaluation study.

Informatica Economică vol. 16, no. 1/2012 9

Table 1. Tools and metrics used in evaluation

Tools Metrics

Name

L
O

C

C
B

O

#
 m

at
h

 o
p

M
ax

n
es

ti
n

g

C
y

.

C
o

m
p
le

x
.

D
IT

D
C

R
F

C

Analyst4j x x x x x x

SWMetrics

x x x x x

CK Java Metrics x x x x x

Understand for Java x x x x

Eclipse Metrics x x x x

Table 2 shows some of the general character-

istics of the metric tools used in the evalua-

tion.

Table 2. Characteristics of the evaluated software metric tools
 Tool name

Characteristics

Analyst4j CK Java Metrics Understand SWMetrics Eclipse Met-

rics

GUI x x x x

Command line X x

Support many language x x

Stand-alone x x x

Plug-ins x x

5 Experiments and evaluation

In this paper, two experiments were conduct-

ed to evaluate the proposed metrics. The first

experiment is designed to test and evaluate

the modified SWMetrics tool. The second

experiment will evaluate the SWMetrics in

comparison with the tools mentioned in Ta-

ble 1. The experiments were carried on a per-

sonal computer (PC) satisfying the minimum

requirements for all tools.

5.1 Decision Coverage Metric Evaluation:
One of the most important limitations of

software metrics is the absence of standards

that define how to measure and evaluate the

results. . Each tool has its own definition for

the given metrics. For this reason the imple-

mentation of each metric will be also differ-

ent; depending on the tool. To this end, the

evaluation of SW Metrics tool will be manu-

al. The evaluation will not be for all metrics,

since, most of the metrics have been evaluat-

ed in [13]. We will focus on evaluating the

two new metrics: decision coverage with Ex-

ceptional Handling (EH) and decision cover-

age without EH. As we described before,

three columns will be added to the

SWMetrics. These columns are used to give

an indication for the degree of the complexity

for all the classes. The first column metric

measures the degree of complexity for each

class in the software system based on LOC.

These classes are classified into three catego-

ries: small, medium, and high. Table 3 shows

the categories and their conditions.

Table 3. Metrics nominal classification based on LOC

Category Condition

Small When LOC less than 50

Medium When LOC greater than or equal 50 and also LOC less than 100

High When LOC greater than or equal 100

10 Informatica Economică vol. 16, no. 1/2012

The same classification process is also ap-

plied to the other metrics. Table 4 shows DC

nominal classification and Table 5 shows

DC-LOC nominal classification.

Table 4. DC nominal classification

Category Condition

Small When DC less than 10

Medium When DC greater than or equal 10 and less than 50

High When DC greater than 50

Table 5 is divided into 5 classes rather than

3: very low, low, medium, high, and very

high.

Table 5. DC-LOC nominal classification

Category Condition
Very low If the complexity based on LOC is “small” and the complexity based on DC is

”small”.

Low If the complexity based on LOC is “small” and the complexity based on DC is

“medium” or vice versa.

Medium If the complexity based on LOC is “medium” and also the complexity based on

DC is “medium”.

High If the complexity based on LOC is “medium” and the complexity based on DC is

“high” or vice versa.

Very high If the complexity based on LOC is “high” and the complexity based on DC is

“high”.

5.2 Evaluation of the Results
In the first stage, experiments are conducted

to evaluate the accuracy of the developed al-

gorithms. Accuracy is compared with the

manual count of the decisions versus those

collected from the tool automatically.

Table 6. Metric evaluation with EH for classes

Category

Name

Project Name Class Name Lan-

guage

Ex-

pected

Output

Actual

Out-

put

Preci-

sion

Complexity

based on

DC

Communica-

tion

AsyncWcfLib-

V2.1

Test1.TwoClien

ts

C# 13 13 100% Medium

Communica-

tion

AsyncWcfLib-

V2.1

FrmClient C# 35 35 100% Medium

Communica-

tion

AsyncWcfLib-

V2.1

Router C# 53 53 100% High

Communica-

tion

Commore-

windows

List C++ 70 70 100% high

Desktop en-

vironment

bsaf-1.9RC4 TaskTest Java 5 5 100% small

Education pigale-1.3.12 free-

glut_geometry

C++ 140 140 100% High

Enterprise AMB New Gen-

eration Data

Empowerment

BI C# 132 132 100% High

Financial JKtoCheck_0.4 AccCheck Java 8 8 100% small

Game ows_0.5_win Tactics C++ 33 33 100% Medium

Network Euler Datatype Java 84 84 100% High

Informatica Economică vol. 16, no. 1/2012 11

Table 6 shows results that are related to the

DC metrics with EH with additional infor-

mation such as: project name, category name,

programming language of software system,

class name, expected output, actual output,

and precision. The expected outputs have

been calculated manually.

The actual output column values represent

the output from SWMetrics. Precision = ac-

tual output / expected output.Table7 contains

the same type of information which is found

in Table 6 while this information related to

Decision Coverage without EH metric.

Table 7. DC Metric evaluation without EH for Classes
Category

Name

Project Name Class Name Lan-

guage

Expected

Output

Actual

Output

Preci-

sion

Com-

plexity

based on

DC

without

EH

Communica-

tion

AsyncWcfLib-

V2.1

Test1.2Client

s

C# 13 13 100% Medium

Communica-

tion

AsyncWcfLib-

V2.1

FrmClient C# 31 31 100% Medium

Communica-

tion

AsyncWcfLib-

V2.1

Router C# 51 51 100% High

Communica-

tion

Commore-

windows

List C++ 70 70 100% High

Desktop en-

vironment

bsaf-1.9RC4 TaskTest Java 3 3 100% small

Education pigale-1.3.12 free-

glut_geometr

y

C++ 140 140 100% High

Enterprise AMB

N.Generation

Data Emp.

BI C# 89 89 100% High

Financial JKtoCheck_0.4 AccCheck Java 8 8 100% small

Game ows_0.5_win Tactics C++ 33 33 100% Medium

Network Euler Datatype Java 82 82 100% high

While financial and system administrative

projects showed an overall higher complexity

as domains relative to other domains, howev-

er, this is not consistent across all projects of

those domains. For example, in the database

domain, we can observe MethodLib software

with high complexity and IBMDatabasePro-

ject with very low complexity. Financial ap-

plications fall largely in complex and high

complex categories (based on decision com-

plexity).

5.3 Tools comparison

The results of the tools comparison showed

that there are differences in calculated met-

rics across tools although they have the same

metric names (e.g. LOC, Cyclomatic com-

plexity, etc.). The differences can be large or

small depending on the size of the software

product.

6 Conclusions

Software metrics have an important indirect

role in increasing the quality of software sys-

tems. Through those measurements, they can

ensure that the developed product is within

regulations. In this paper, a software metric

tool is extended to cover evaluating complex-

ity metrics relation to decision coverage. It is

expected to correlate the occurrence of many

decisions in a particular code with increasing

its complexity. In this paper, we also tried to

12 Informatica Economică vol. 16, no. 1/2012

see the combinational factor of the effect of

the decision coverage (DC) with the tradi-

tional size metric (LOC).

We found that the DC can be used as a sig-

nificant indicator for the software complexi-

ty. This of course does not mean that it is the

only factor that can impact the software

complexity. Through the evaluation and

comparison of the developed tool with sever-

al software metric tools, it is noticed that

there is a need to have a unified standard for:

defining, developing and analyzing software

metrics. Despite the fact that formulas of

some metrics (LOC, e.g. CK and Halstead

metrics) are widely known, nonetheless, the

investigations showed that the actual imple-

mentation and results of those metrics can

vary.

References

[1] A. Dominguez and R.J. Debouk. “Feature

Interaction as a Source of Risk in Com-

plex Software-intensive Systems”.

The 25
th

 International System Safety Con-

ference, Baltimore, 2007, pp: 13-17.

[2] W. Li and S. Henry. “Maintenance Met-

rics for the Object Oriented Paradigm”. In

proc. Software Metrics Symposium, 1993,

pp. 52-60

[3] B. Henderson-Sellers, L. Constantine and

I. Graham. “Coupling and Cohesion (To-

wards a Valid Metrics Suite for Object

Oriented Analysis and Design)”. In proc.

Object Oriented Systems, Vol. 3, 1996,

pp. 143-158

[4] L.C. Gray.“ A Coupling complexity met-

ric suite for predicting software quality”,

Master thesis, California Polytechnic

State University, 2008.

[5] D. Liu and S. Xu.“New Quality Metrics

for Object-Oriented Programs”. In proc.

SNPD '07 of the Eighth ACIS Interna-

tional Conference on Software Engineer-

ing, Artificial Intelligence, Networking,

and Parallel/Distributed Computing, Vol.

III, 2007, pp. 870 – 875.

[6]K. Kaur, K. Minhas, N. Mehan and N.

Kakkar.“Static and Dynamic Complexity

Analysis of Software Metrics”. In

proc.Empirical Software Engineering,

Volume: 56, Issue: V, 2009, pp: 159-

161.

[7] A. Dupuyand A. Leveson, “An empirical

evaluation of the MC/DC coverage crite-

rion on the HETE-2 satellite software”,In

proc. Digital Aviation Systems Confer-

ence, Philadelphia, 2000.

[8] http://shailajakiran-

testing.blogspot.com/2007/11/statement-

coverage-decision-coverage.html. (2010).

[9] S. Kan, Metrics and Models in Software

Quality Engineering, 2
nd

 edi-

tion, Addison-Wesley Professional, 2002.

[10] I. Alsmadi and K. Magel.“Open source

evolution analysis”, In proc. of the 22nd

IEEE International Conference on Soft-

ware Maintenance, pp. 276 – 278, 2006.

[11] S. Chidamber and C. Kemerer. “A Met-

rics Suite for Object-Oriented Design”,In

procIEEE Transactions on Software En-

gineering, Vol. 20, No. 6, pp. 476-493,

1994.

[12] N. Fenton and S. Pfleeger, Software

Metrics: A Rigorous and Practical Ap-

proach,2nd edition, 1997.

[13] I. Alsmadi. “Software metrics: toward

building proxy models”, Master's thesis,

North Dakota State University of Agri-

culture and Applied Science, 2006.

[14] M. Andersson and P. Vestergren. “Ob-

ject-Oriented Design Quality Metrics”.

Uppsala Master’s Theses in Computer

Science276, 2004.

[15] G. Alkadi and I. Alkadi, ” Application

of a Revised DIT Metric to Redesign an

OO Design”, In proc. Journal of Object

Technology, Vol. 2, No. 3, pp. 127-134,

2004.

[16] M. Hitzand B. Montazeri. “Chidamber

and Kemerer’s metric suite: A Measure-

ment Theory Perspective,” In proc. IEEE

Transactions on Software Engineering,

Vol. 4, pp. 267-271, 1996.

[17] http://cccc.sourceforge.net/. Accessed

on 5/11/2010

[18] http://www.eclipse4you.com/?q=en

/eclipse_plugins/analyst4j/. Accessed on

5/11/2010

[19] http://depfind.sourceforge.net/. Ac-

cessed on 6/11/2010

http://portal.acm.org/citation.cfm?id=525227&CFID=112668478&CFTOKEN=29329495
http://portal.acm.org/citation.cfm?id=525227&CFID=112668478&CFTOKEN=29329495
http://portal.acm.org/citation.cfm?id=525227&CFID=112668478&CFTOKEN=29329495
http://cccc.sourceforge.net/
http://depfind.sourceforge.net/

Informatica Economică vol. 16, no. 1/2012 13

[20] http://jcsc.sourceforge.net/. Accessed on

10/11/2010

[21]http://www.spinellis.gr/sw/ckjm/. Ac-

cessed on 10/11/2010

[22] J. Alghamdi, R. Rufai and S. Khan

“OOMeter: A Software Quality Assur-

ance Tool”,In proc. Ninth European Con-

ference on Software Maintenance and

Reengineering (CSMR'05), pp.190-191,

2005.

[23] R. Chatterjee, B. Ryder,“Complexity of

Points-To Analysis of Java in the Pres-

ence of Exceptions”, In proc. IEEE

Transaction on Software Eng.,Vol. 27,

No. 6,pp. 481-512, 2001.

[24] R. Lincke, J. Lundberg and L. Welf.

“Comparing software metrics tools”,In

proc. International Symposium on Soft-

ware Testing and Analysis, pp. 131-142,

2008.

[25] http://www.scitools.com/ fea-

tures/metrics.php. Accessed on 5/12/2010

[26] S. Misra and A.K. Misra. “Evaluation

and Comparison of Cognitive Complexity

Measure”, In proc. ACM SIGSOFT Soft-

ware Engineering Notes, Vol. 32, No. 2,

pp.1–5, 2007.

Mustafa Zaid AL-HAJJAJI obtained his Master degree in computer infor-

mation system from Yarmouk University (Jordan) in June 2011. He received

his B.Sc. in computer information system from Mutah University (Jordan) in

June 2008. His research interests include: software engineering, software

metrics, and wireless sensor networks.

Izzat Mahmoud ALSMADI is an assistant professor in the department of

computer information systems at Yarmouk University in Jordan. He obtained

his master and Ph.D degree in software engineering from NDSU (USA). He

had B.sc degree in telecommunication engineering from Mutah university in

Jordan. Before joining Yarmouk University he worked for several years in

several companies and institutions in Jordan, USA and UAE.

Samer SAMARAH received the Ph.D. degree in computer science from the

University of Ottawa, Ottawa, ON, Canada, in 2008. He is currently an Assis-

tant Professor with the Department of Computer Information System, Yar-

mouk University, Irbed, Jordan, and a Research Associate with the School of

Information Technology and Engineering, University of Ottawa. His research

interests are Software Engineering, wireless networks, wireless ad hoc and

sensor networks, and data mining for both distributed systems and wireless

sensor networks.

http://jcsc.sourceforge.net/
http://www.spinellis.gr/sw/ckjm/
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse27.html#ChatterjeeRL01
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse27.html#ChatterjeeRL01
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php

