
88 Informatica Economică vol. 15, no. 3/2011

Approaches Regarding Business Logic Modeling in Service Oriented
Architecture

Alexandra FLOREA, Anca ANDREESCU, Vlad DIACONITA, Adina UTA

Academy of Economic Studies, Bucharest, Romania
alexandra.florea@ie.ase.ro, anca.andreescu@ase.ro diaconita.vlad@ie.ase.ro,

adina.uta@ie.ase.ro

As part of the Service Oriented Computing (SOC), Service Oriented Architecture (SOA) is a
technology that has been developing for almost a decade and during this time there have been
published many studies, papers and surveys that are referring to the advantages of projects
using it. In this article we discuss some ways of using SOA in the business environment, as a
result of the need to reengineer the internal business processes with the scope of moving
forward towards providing and using standardized services and achieving enterprise
interoperability.
Keywords: Business Rules, Business Processes, SOA, BPM, BRM, Semantic Web, Semantic
Interoperability

Introduction
In developed societies more than 60% of

the work force is dedicated to the delivery of
services [1]. From business perspective, the
importance of services for modern
enterprises is such that it has led to the SOC
paradigm [2] [3] and its technological
counterpart SOA. In the last year, the buzz
around Service-Oriented Architecture (SOA)
has diminished as it has entered the
mainstream, and at the same time more
companies are engaging such projects.
According to some authors [4], SOA has
reached the top ten in effective strategies or
visions, competing with other strategies such
as: virtualization, business intelligence,
standardized application platforms,
application harmonization, mobility
solutions, and collaboration. Still, according
to John Ladley [5], only 17% of the firms
who answered his survey are running SOA,
and only 5% have a robust enterprise view
with associated data governance. The
average company spends about 85% of its IT
budget to keep existing operations and only
15% of its budget on changing the business,
innovation, or new capabilities for the
business. Companies that invest in SOA are
those that know it’s wise to spend in order to
create capabilities that innovate, differentiate,
and change the business in a way that creates
desired business outcomes. For those, SOA is

the preferred architectural approach, paired
with cloud computing and analytics, a
blueprint for making both the business and IT
more efficient such that a company can spend
40% of its IT budget on creating new
business capabilities.

2 Service technologies
The adoption of service oriented concepts
has very different motivations for the two
categories of intended audience, respectively
IT and business, as they see quite a different
set of potential benefits or disadvantages.
Looking from the IT perspective, SOA could
be viewed as the next step of good
engineering practices, going from class reuse
to service reuse irrespective of
implementation language or host platform.
Among the benefits of this approach not only
to the IT field but indirectly to the business
itself, Scott Glen [6] mentions the decrease
of development effort and an improvement in
IT project delivery, greater flexibility in
business planning provided by the use of
interfaces to isolate specific operational
systems and an easier introduction of new
business system due to the removal of point-
to-point connections.
Service-oriented architecture (SOA)
represents a significant step towards realizing
more dynamic and less expensive integration
solutions. Using distinct services to

1

Informatica Economică vol. 15, no. 3/2011 89

encapsulate functionality that can later be
discovered and used is certainly an important
step in the transition from a patchwork of
proprietary products and legacy software to a
flexible yet robust architecture.
SOA and ESB (Enterprise Service Bus) use
the following standards and protocols: J2CA,
JMS, SOAP, HTTP, WSDL, JDBC,
XML/XSD, XSLT, XPATH, WS-* protocols
(like WS-Addressing, WS-Security and WS-
Reliable Messaging), BPEL (Business
Process Execution Language) and SCA
(Service Component Architecture).
An ESB should enable transport to the
service consumer and guide have a set of
design patterns and best practices to provide
the necessary infrastructure to support using
a single tool other components that are not
using only web services or message driven
use cases, but also non-XML based endpoints
such as ASCII files, ETL (Extract,
Transform, Load) procedures and enterprise
applications. ESBs should be flexible at
dealing with high volumes, diverse service
mediation cases and to scale across multiple
projects. Large volumes of stateless
messages can usually be processed by
mediation only, but sometimes, an
orchestration step is required.
Information as a Service models focus on
data integration and on optimizing the
exposure of information contained in data
from multiple disparate sources. Data
services can behave as shared components in
a SOA Integration solution, making use of
other elements in tooling, service integration,
process integration and connectivity as a way
to simplify complex information-centric
integration patterns. SOA Integration and
SOA Governance need to work together,
governance is essential to ensuring that your
SOA has been implemented as intended they
give the right control and visibility needed
for successful SOA implementations [7].
SOA and BPM can optimize business
processes. When a business process model is
constructed optimization can begin when
runtime feedback is received by the business
analyst. Improvements are identified and the
models are updated through an iterative

business-integration cycle. SOA and BPM
should be integrated to give users
applications enabling them to share data
helping optimize the connection between a
business processes and how those processes
are translated to the integration[8].

3 Business perspectives for integration
From a business perspective the key word in
dealing with SOA is definitely flexibility.
Companies must be able to keep pace with
the rapid changing conditions of the business
environment. In the same time the trend in IT
architectures leads toward an integrated
model by building business processes that
span multiple operational systems and by
enabling interoperability between legacy
systems and newly developed systems.
With SOA companies have the flexibility
needed for implementing such a model and
also a framework for using business process
modeling as the key technology in handling
the ever present business changes. There are
different graphical tools that analysts can use
in order to define and model the business
process and the results of their modeling
work can be expressed in the Business
Process Execution Language (BPEL). BPEL
is an XML vocabulary which can be used in
other integration tools that create a link
between a business process and the business
service designed to realize the tasks of the
business process, thus realizing integrated
solutions that fulfill the business
requirements. Among the advantages of such
an approach the following stand out:
business-driven development of IT solutions,
enterprise solutions, reusable business
components and of course business flexibility
and agility. In this approach those that set the
trend are the business analysts that define the
software processes by aligning them to the
business needs and thus assuring the
business’s capability to adapt to change.
SOA Integration implies using Service
Oriented Architecture (SOA) to deal with the
integration needs of an enterprise. To achieve
this, it’s not sufficient to have an ESB or
BPEL coupled with adapters. A good SOA
Integration can help people, business

90 Informatica Economică vol. 15, no. 3/2011

processes and computer applications to run
more efficient and bring advantage to a
business by focusing on services that can be
shared and reused across the enterprise. A
service has reuse potential if it provides
capabilities that are not specific to any one
business process and it is useful to the
automation of more than one business
process [9].
Utility services are frequently process-
agnostic because they are intentionally
designed to not encapsulate business logic.
Business services need to be well designed to
avoid being tied to parent business logic.
Platform dependencies limitations can be
avoided by making the service capable of
encapsulating logic from different
application environments. Not linking
services to specific processes and proprietary
implementation eases building an inventory
of services that can be reused and composed
when new requirements appear. SOA
provides a framework for enabling services,
data, and events, and connecting them to
better align with business requirements. It
supports key integration patterns that allow
IT managers and IT architects to aggregate,
orchestrate, and mediate these services
increasing the responsiveness to the constant
changes in business requirements [10].

4 Business Logic Implementation in SOA
Business logic is the defining element for a
business being in the process of modeling
and automation, and it includes both business
rules and workflow (process), which
describes the transfer of documents or data
from one participant (person or software
system) to another. Business Rules refers to
the multitude of policies, procedures or
definitions that govern how an organization
works together with its interaction with
customers or partners. These may be external
rules, coming from legal regulations that
must be observed by all organizations acting
in a certain field, or internal rules which
define the organization’s business politics
and aim to ensure competitive advantages in
the market. Starting from the previous
observations, it is obvious the important role

that business rules play within the
development process of a software system.
The success of business rules’ adoption in a
software project largely depends on the
ability to separate and independently design
business rules and business processes in
order to reuse them. Design solutions that
have succeeded to address this separation
problem propose that the distinction between
business rules and processes should start
from the role that each one plays within the
underlying business, in that business rules
produce knowledge and business processes
run business activities [11]. Recent years
have been marked by an increased interest
for a new type of software products, called
Business Rules Management Systems
(BRMS). These systems externalize business
rules and provide facilities for a centralized
business rules management (BRM),
frequently by using a business rules engine.
They also offer solutions for compelling
problems facing any business: business rules
changes in response to increasingly rapid
pace of change and the short time required
for the implementation of these changes in
the software system.
Historically, research and practical solutions
in business process management (BPM)
preceded the appearance of business rules
approaches (the latter tried to impose rules as
a central element in the software
development process) Ronald Ross [12], one
of the promoters of business rules
approaches, emphasized the importance of
focusing on business rules because “[…]
business processes are not so simple. In fact,
they are quite complex and therefore difficult
to change”. This is because processes highly
depend on rules.
In situations that involve simple rules,
process engines will likely implement the
rules directly, but in order to handle more
complex situations, most process engines
have the ability to call other components that
implement rules.
It’s a fact that SOA is centered on building
services that are especially designed for
interoperability from the very start. But SOA
is also about raising the abstraction levels of

Informatica Economică vol. 15, no. 3/2011 91

interfaces: interfaces that must support the
business, not the system [13]. The
combination between business rules and web
services offers an adequate approach for
applications integration and sharing of
distributed information. Business rules
adoption, together with a service-oriented
architecture allows the integration of
strategic corporate applications between
multiple business units. For example the
same business logic that has been explicitly
defined in a BRMS may be shared in a SOA
with other applications that need it. These
applications communicate via XML with the
Business Rules Services [14].
According to [15] using BRM and BPM
together in a SOA represent the
methodological and technical requirement for
industrializing business processes and being
agile. Applications constructed using BPM
software may include web services, rules
contained in a rules engine and control and

flow business logic, part of the process,
coded or rendered using BPM software. The
SOA and Business Process Management
(BPM) developers and researchers focus on
the technology to build and operate service
networks and to automate the business
processes that take place inside them. In the
paper [16], the authors envision service
networks modeling as the means to gain
better alignment between the business and IT
perspectives in enterprises. The enhanced
alignment is achieved by (1) providing an
overview of inter- and intra-enterprise
business relationships in terms of service
providing, (2) supporting decision making on
service networks in terms of business
relationships between participants, and (3)
facilitating the propagation of changes from
service networks to the underpinning
software service infrastructures and vice
versa.

Fig. 1. Usage of business rules and process engines in SOA

[adapted after [17]]

Figure 1 describes the common usage of
business rules and process engines in the
SOA implementation.
The problem is many consider the business
architecture as simply a step in developing
the informatics architecture, thus managers
rarely participate in enterprise architecture or

business architecture development, therefore
minimizing the effectiveness of the resulting
business architecture. The solution is that the
stakeholders realize the importance of the
business architecture, it’s an asset of the firm
and it can greatly impact one’s results.

92 Informatica Economică vol. 15, no. 3/2011

Table 1. Value-added to the integrated solution by each technology
 Value-added

BRM • standardization and transparency of business policies
and principles

• business rules externalization from the core applications
• business users can access and manage business rules

BPM • standardization and automation of business processes
• flexibility in business activities ordering
• ability to call business rules services

SOA • separates specific types of logic included in processes
and decisions

• business rules becomes services that can be reused across
systems

• minimize the impact of expected changes

Each one of the above technologies brings an
added-value to the final integrated solution,
as summarized in Table 1.

5 Semantic interoperability in SOA
One of the most important architectural
features of SOA is the semantic
interoperability. This is one of the
cornerstones of service-oriented approach
because it ensures fair and consistent data
exchange between clients and service
providers involved. Lack of semantic
interoperability leads to erroneous
interpretations of the message sent and to
data corruption, due to different
interpretations that can be granted to the
same concepts by the two parties. In essence,
semantics is the foundation of SOA, without
it data being nothing more than meaningless
binary strings.
Despite its great importance, in the present
semantics is not given due attention, it
represents a secondary concern when design
and implementation activities occur. This is
mostly due to the fact that developers tend to
take semantic interoperability for granted
especially because the semantic
interpretation, mapping and transformation
are so ingrained with home grown
applications, Enterprise Application
Integration (EAI) and Enterprise Information
Integration (EII) [18].
When there is an exchange of messages
through a service, there are a number of

mappings of names, values and structures
that appear in these messages. These
mappings are accomplished through message
transformation rules and make the necessary
semantic correspondences for a common
understanding of the message by the issuer
and receiver. When performing such
mappings, no explanation of how the source
and target refer to real entities is given.
Basically the message transformation rules
that are written and used should be taken as
such because there is no accounting for the
reason why the corresponding mappings are
sustainable. This way of looking at and
addressing semantics, without in depth
explanations can be called neutral.
This way of addressing the problem of
semantic interoperability is a pragmatic one,
which can be used without problems in many
current situations as it is reasonable to
believe that usually, the partners involved in
the exchange of information through
services, have the same interpretation of their
description. Often, this neutrality is based on
a relatively realistic assumption, namely that
the attributes that shape the architecture of
services is set in a natural way, once and for
all. Thus, because by default the same
services using ontology, developers’ role is
merely to neutralize a number of differences
in names and representation of elements that
are part of a unique, universal
conceptualization [19].

Informatica Economică vol. 15, no. 3/2011 93

This approach cannot be widely used,
although in some cases it is reasonable,
because it starts from the assumption that
there is an implicit consensus between the
parties involved, a consensus that goes
beyond infrastructure and is established in
the social system which includes the
information system. This hypothesis is
unreliable considering that SOA is used for
developing systems for large, geographical
distributed organizations and therefore have
representatives from different social
environments. Basically, under neutral
approach, we can assume that two attributes
refer to the same item if they have the same
name. This would be true if all parties have
the same interpretation of labels used. For
example, when the infrastructure of services
is developed, used and managed in an
organization where there are rules and
naming policies that can be applied and
controlled. But when discussing about
various environments, designers cannot make
assumptions about the interpretations that are
given to the concepts used. In fact, they must
work with information providers which are
only required to give a brief description of
the types of services they make available,
especially from a functional perspective, so
that no information about the coding and
interpretation of data is available. Semantics,
which is how the services actually carried out
what their description promises, is
encapsulated in the "black box" of service
implementation [19].
The basic idea to remember is that no single
interpretation of a service can be made
relying only on a description of the service.
In working with services no trustworthy
semantic assumptions can be made. Without
semantic interoperability, there can be no
assurance that the data encapsulated in the
messages exchanged through the service, is
interpreted by the parties that interact as the
same concepts, relationships or entities, so
there are chances that they will be
misinterpreted and ultimately bring harm to
the business.
There are many templates proposed to
achieve semantic interoperability, and

according to [18] they can be grouped into
five broad categories: point to point type
semantic integration, hub and spoke type
semantic integration, master data
management (MDM), models of industrial
information and semantic Web. The semantic
Web goes beyond the borders of applications,
organizations and industries. It makes
connections between data models and
elements of a common ontology and uses
RDF (Resource Description Framework) and
WOL (Web Ontology Language) for
allowing data to be shared and reused online.

6 Business rules in the semantic Web
Due to the growing volume of information
available on the Web, it is difficult to fully
automate their retrieval, much less by the
human operator [20]. This is also one of the
objectives of the Web Consortium, which
seeks to identify ways, based on XML
technologies, for solving the problem of
computer-based information processing in
cyberspace. A viable solution appeared to be
the semantic web, which is a “consistent and
logical web of all resources on available on
the Web, with emphasis on machine data
interpretation and not on their representation”
[21].
Semantic Web architecture is functional one,
because its development is based on
incremental languages’ specification, starting
from the lower level (the metadata) through
the upper levels (logic level) [22]. Languages
available on each level can meet the
requirements imposed by different types of
applications: 1) metadata level provides the
overall framework for expressing simple
semantic assertions. The model includes
concepts such as resource and property, in
order to express meta-information. The
language is specified via RDF and the
various DCMI metadata vocabularies
(Dublin Core Metadata Initiative), RSS (Rich
/ RDF Site Summary), FOAF (Friend Of A
Friend); 2) scheme level enables simple
specification of the ontology in order to
define a hierarchical description of the
concepts and properties, 3) logic level
introduces more complex ontology

94 Informatica Economică vol. 15, no. 3/2011

languages, capable of sophisticated ontology
model.
So the Semantic Web is applying the idea of
knowledge-based systems and ontologies for
the Web. But when their manipulation is
possible through computers, ontologies can
be viewed as metadata which explicitly
represent the semantics of data in such a way
that enables direct computer processing.
While de semantic web is centered on data
integration, SOA deals with operations and
services in addition to the data. The
intersection of these two approaches is found
in the form of semantic web services [23].
Semantic services can be considered a
component of the semantic web as they use
markups, which make data machine-readable
in a detailed and sophisticated way. Besides
these, markup languages for business rules
allow the specification of rules as
independent and modular units in a
declarative manner and also their publication
and interchange between different systems or
tools. Wagner [24] predicted that they will
play an important role in the Web for
business- to-customer (B2C) and business –
to - business (B2B) interactions. The scope
of rule markup languages can be extended
from the two areas mentioned above and
their contribution can have a positive impact
on other domains, such as e-government.
And since now SOA is an important
paradigm in developing system applications
and ensuring interoperability between these,
the implementation of business rules in a
SOA using markup languages is expected to
led to a bigger interoperability level, as we
will further discuss.
Studies about introducing rules on the Web
have increased consistently since the year
2000 with the presentation of an initiative
called RuleML. Rule Markup Language
(RuleML) is a markup language that was
proposed by the Rule Markup Initiative as
the standard language for publishing and
distributing rules specific to Web based
applications [25]. In fact, RuleML
specifications represent a modular family of
sublanguages for the Web, which root allows
access to the language as a whole and whose

members allow the identification of
customized subsets of the language. Each
sublanguage has its own definition of an
XML schema, identified by a URI. At the
first level of the modular structure, RuleML
family distinguish between derivation rules,
queries and integrity constraints, but also
production rules and reaction rules. The
language’s most developed branch groups
derivation (deduction) rules, which in turn
are based on a core language called Datalog
and two major side branches named Hornlog
and FOL (First Order Logic). Being now at
its 1.0 version, RuleML is implemented
using XML schemas, XSL transformations
(XSLT) and reasoning engines. RuleML is
also extensible, as examples we can mention
its combination with WOL that led to the
formation of the Semantic Web Rule
Language (SWRL) and its object oriented
extension called OO RuleML [26].
Since RuleML should facilitate
interoperability between systems that use
rules, the possibility of converting it (using
XSLT) to other Semantic Web standards
(like RDF or WOL) or specific rules engine
languages (such as Jess) is particularly
important.
RuleML intends to cover a wide range of
business rules types. In this way, it could be
used to specify queries and inferences in
Web ontologies, or to make correlations
between Web ontologies and dynamic
behavior of workflows, services and agents
within the Web environment [27].
Particularly important in a software system is
the possibility to define implications or
inference rules, especially when they relate to
each other and require chaining mechanisms
in order to execute rules in the correct order.
RuleML Datalog implication rules confront
facts with rules with the purpose of
producing new knowledge. As an example,
we will consider the next two implications
(or inference) rules which are specified in
RuleML:
Rule 1: A customer enters the Gold category
if he gathered, through his orders and
behavior, a score of at least 50 points.

<Implies>
 <if>

Informatica Economică vol. 15, no. 3/2011 95

 <Atom>
 <Rel>points</Rel>
 <Var>client</Var>
 <Data>min 50</Data>
 </Atom>
 </if>
 <then>
 <Atom>
 <Rel>Gold</Rel>
 <Var>client</Var>
 </Atom>
 </then>
</Implies>

Rule 2: The discount for a customer is 30%
if he placed an order of at least 5000
monetary units and falls into the Gold
category.

<Implies>
 <if>
 <And>
 <Atom>
 <Rel>Gold</Rel>
 <Var>client</Var>
 </Atom>
 <Atom>
 <Rel>value</Rel>
 <Var>order</Var>
 <Data>min 5000</Data>
 </Atom>
 </And>
 </if>
<then>
 <Atom>
 <Rel>discount</Rel>
 <Var>client</Var>
 <Var>order</Var>
 <Data>30 procent</Data>
 </Atom>
</then>

 </Implies>

The main idea between these rules’
definitions is that data must take the form of
RuleML facts, which will be subsequently
mapped to the inference rules. In order to be

able to execute the above two rules, the
following two facts have been considered:
Fact 1: The client named Tom has gathered a
score of at least 50 points.

<Atom>
 <Rel>points</Rel>
 <Data>Tom</Data >
 <Data>min 50</Data>

 </Atom>
Fact 2: The value of the order with the code
OR20157, placed by Tom, has exceeded
5000 monetary units.

<Atom>
 <Rel>value</Rel>
 <Data>OR20157</Data>
 <Data>min 5000</Data>
</Atom>

Regarding the structure of RuleML language,
the superior positioning of tag <Implies> can
be observed. This contains the tags <if> and
<then> representing the rule’s condition and
respectively the rule’s action. Within these
tags, relationships between the elements of
the analyzed domain are defined in the form
of atomic formulas, as indicated by the tag
<Atom>.
As shown in figure 1, the reasoning process
starts from Rule 1 and Fact 1 that are used
together for generating a first derivation
(Fact 3): the rule's atom between the if tags
matches the fact atom, binding
<Var>customer</Var> to
<Data>Tom</Data>. Then this binding is
used to instantiate the same variable in the
rule's then tags and a new <Atom> is derived
expressing that:
Fact 3: Tom is a Gold customer.

<Atom>
 <Rel>Gold</Rel>
 <Data>Tom</data>
</Atom>

Fig. 2. Steps of the reasoning process for the exemplified RuleML rules

96 Informatica Economică vol. 15, no. 3/2011

Rule 2 is composed of two atoms connected
by the <And> tags. First of them,
<Rel>Gold</Rel>, chains to Rule 1, which
has evaluated Tom as being a Gold customer.
Then, the <Rel>value</Rel> atom matches
the second atom from Fact 2, binding
<Var>order</Var> to
<Data>OR20157</Data>. Therefore,
because the bindings in Rule 2 have
succeeded, a new fact is generated:
Fact 4: For the order number OR20157,
client Tom will have a 30% discount.

<Atom>
 <Rel>discount</Rel>
 <Data>Tom</Data>
 <Data>OR20157</Data>
 <Data>30 procent</Data>
</Atom>

Being based on XML, RuleML inherits all its
benefits, including platform independence
and interoperability. But it is a low level
language, making it difficult to be adopted by
business people. As an attempt to increase
RuleML’s level of abstraction, open source
tool TRANSLATOR [28] was created and it
automatically translates the statements
written in natural language similar to the so
called Attempto Controlled English, in
RuleML rules.

7 Conclusions
Like other technologies such as structured
design and analysis, databases, information
engineering, object oriented development,
frameworks and patterns, SOA will continue
to be well-established as a best practice. The
adoption of SOA together with BRM and/or
BPM will allow organizations to integrate
and deploy new applications more easily due
to SOA’s significant interoperability
advantages.
BPM should not be viewed only for the
creation and customization of applications.
Over time, business process logic remained
encoded only at the level of the applications,
described in the program lines, making it
difficult and costly to change. These
problems have lead to changes being made
by duplicating parts of the business
functionality and by manual workarounds.
New technologies such as SOA and BPM,

used together, are making possible
readjustments in the IT budget to encourage
innovation and developing fresh capabilities
for the business.
Compared with rule engine languages or
proprietary languages of Business Rules
Management Systems, the foremost
advantages of RuleML in a service oriented
environment are its markup nature, which
leads to interoperability capabilities, the
ability to define a wide range of rules
categories, business rules externalization
from core applications, but also the
possibility to be translated in other web
standards or languages as mentioned above
(capability defined as rule interoperation
between industry standards). However, its
major drawbacks have delayed large scale
adoption, as RuleML is too technical for
allowing business people to define and
modify rules and, in addition, few tool
support and practical applications are
available. Nevertheless, for software
applications that relay on semantic web
and/or SOA, the implementation of business
rules using markup languages might be the
“real” solution when dealing with rules in the
Web.

References
[1] P. Maglio, S Srinivasan, J. T. Kreulen,

and J Spohrer, “Service systems,
service scientists, and innovation”,
Communications Of The ACM -
Services Science, Issue 49(7), pages
81–85, 2006.

[2] M. P. Papazoglou, P. Traverso, S.
Dustdar and F. Leymann, “Service-
oriented computing: State of the art and
research challenges”, IEEE Computer,
Issue 40(11), Pages 38–45, 2007.

[3] M. P. Papazoglou, P. Traverso, S.
Dustdar and F. Leymann, Service-
Oriented Computing: A Research
Roadmap, in “International Journal Of
Cooperative Information Systems”, vol.
17, n. 2,2008, pp. 223-255.

[4] K. Holley and A. Arsanjani, “100 SOA
Questions Asked and Answered”,
Prentice Hall, 1 edition, ISBN 978-

Informatica Economică vol. 15, no. 3/2011 97

0137080205, pages 220-221,November
22 2010.

[5] J. Ladley, “SOA Survey Results”,
Enterprise Data Journal, November
2010.

[6] S. Glen and J. Alexander, “A practical
application of SOA”, IBM white paper,
2007

[7] G. Sabau, A.R. Bologa, R. Bologa, M.
Muntean, “Collaborative Network for
the development of an Informational
System in the SOA context for the
University Management”, International
Conference on Computer Technology
and Development (ICTD2009),
Malaysia 2009, IEEE Computer
Society, pp 307-311, ISBN 978-0-
7695-3892-1.

[8] A.R. Bologa and A. M. I. Florea,
“Approaches in Business Oriented
Management of Web Services”, The
Ninth International Conference On
Informatics In Economy, The
Proceedings of the Ninth International
Conference On Informatics In
Economy, Bucuresti, Mai 2009, pg 233-
239, ISBN : 978-606-505-178-2.

[9] T. Erl, “SOA, principles of service
design”, Prentice Hall, ISBN 978-0-13-
234482-1, 2007.

[10] D. Hansen, “Blueprint for Successful
SOA Integration”, Oracle Paper, March
2008.

[11] T. Morgan, “Business Rules and
Information Systems: Aligning IT with
Business Goals”, Addison Wesley,
2002.

[12] R. Ross, “Principles of the Business
Rules Approach”, Addison-Wesley,
2003.

[13] I.Graham, “Business Rules Management
and Service Oriented Architecture: A
Pattern Language”, Wiley, 2007.

[14] M. Mircea and A. Andronescu, “Using
Business Rules in Business
Intelligence”, Journal of Applied
Quantitative Methods, Volume 4, Issue
3, September, 2009.

[15] W. M. Tem, “Role of Business Rules in
SOA”, Annecy, France, 2006, available

at: http://www.visual-
rules.com/fileadmin/pdf-en/white-
paper/business-rules-processes-soa.pdf

[16] D. Olha, K. Dimka and L. Frank,
“Service Networks Modeling: An SOA
& BPM Standpoint”, Journal Of
Universal Computer Science, Volume
16, Issue 13, Pages: 1668-1693, 2010.

[17] B. Lublinsky, D. Le Tien, Implementation
of business rules and business processes in
SOA, March, 2007, available at:
http://www.infoq.com/articles/business-
rules-processes.

[18] S. M., W. D., Zurek B., Kahan E., Achieve
semantic interoperability in SOA, IBM
Technical Library, June 2006.

[19] G. Vetere, M. Lenzerini, Models for
semantic interoperability in service
oriented architecture, IBM Systems
Journal, Vol. 44, Issue 4, 2005, pp 887
– 903.

[20] S.C. Buraga, ‘Semantic Web –
fundamente şi aplicaţii”, Matrix Rom,
Bucharest, 2004.

[21] T. Berners-Lee, J. Hendler, O. Lassila,
“The Semantic Web”, Scientific
American Magazine, May 2001.

[22] S.C. Buraga, “Considerations Regarding
the Use of Semantic Web Technologies
in the Context of E-business
Applications”, Informatica Economica
Magazine, Bucharest, number 3, 2005.

[23] Semantic Web Services, available at:
http://en.wikipedia.org/wiki/Semantic_
Web_Services

[24] G. Wagner, “How to Design a General
Rule Markup Language”, presented at
the workshop “XML Technologies for
the Semantic Web” (XSW2002),
Humboldt University, Berlin,
Germania, June 2002

[25] The Rule Markup Initiative - RuleML,
available at: http://ruleml.org/

[26] H. Boley, “The RuleML family of web
rule languages”, the fourth
international workshop “Principles and
practice of semantic web reasoning”,
Budva, Montenegru, June 2006.

[27] M. A. Cibrán, “Connecting High-Level
Business Rules with Object-Oriented

98 Informatica Economică vol. 15, no. 3/2011

Applications: An approach using
Aspect-Oriented Programming and
Model-Driven Engineering”, PhD
thesis, Vrije University, Brussel, June
2007.

[28] D. Hirtle, TRANSLATOR: “A Translator
from Language to Rules”, in the
proceeding of Canadian Symposium on
Text Analysis (CaSTA’06),
NewBrunswick, Canada, 2006.

Alexandra Maria Ioana FLOREA is a pre-assistant lecturer at the
Economic Informatics Department of the Faculty of Cybernetics, Statistics
and Economic Informatics of the Academy of Economic Studies. She has
graduated from the faculty at which she is now teaching in 2007 and also
from the Faculty of Marketing in 2008. Since then she is a PHD candidate,
studying to obtain her PhD in the field of economic informatics. At present
her fields of interest include integrated information systems, information

system analysis and design methodologies and database management systems.

Anca Ioana ANDREESCU is university lecturer in Economic Informatics
Department, Academy of Economic Studies of Bucharest. She published
over 15 articles in journals and magazines in computer science, informatics
and business management fields, over 20 papers presented at national and
international conferences, symposiums and workshops and she was member
in over nine research projects. In January 2009, she finished the doctoral
stage, the title of her PhD thesis being: The Development of Software

Systems for Business Management. Her interest domains related to computer science are:
business rules approaches, requirements engineering and software development
methodologies.

Vlad DIACONIŢA is an Assistant Lecturer at the Economic Informatics
Department at the Faculty of Cybernetics, Statistics and Economic
Informatics from the Academy of Economic Studies of Bucharest. He has
graduated the faculty at which he is now teaching in 2005 and has a PhD in
the field of Cybernetics and Statistics. He is the co-author of 2 books in the
domain of economic informatics, 3 articles in ISI journals, 4 articles in
Scopus journals, 5 articles in ISI proceedings, 6 papers in B+ journals and 6
papers in the proceedings of international conferences. He participated as

team member in 3 research projects that have been financed from national research programs.
He is a member of the IEEE Computer Society and the INFOREC professional association.
Domains of competence: Database systems, Data warehouses, OLAP and Business
Intelligence, Integrated Systems, SOA.

Adina Ileana UŢĂ is university professor in Economic Informatics
Department, Academy of Economic Studies of Bucharest. She published
over 30 articles in journals and magazines in computer science, informatics
and business management fields, over 50 papers presented at national and
international conferences, symposiums and workshops and she was member
or director in over 40 research projects. In 2000 she finished the doctoral
stage, the title of her PhD thesis being: The automation of analysis and

forecast activities related to final energy consumption. Her interest domains related to
computer science are: software development methodologies and development systems.

	Approaches Regarding Business Logic Modeling in Service Oriented Architecture
	[17] B. Lublinsky, D. Le Tien, Implementation of business rules and business processes in SOA, March, 2007, available at: http://www.infoq.com/articles/business-rules-processes.

