
Informatica Economică vol. 15, no. 3/2011 5

Using Spec Explorer for Automatic Checking of Constraints in Software

Controlled Systems

Salam AL-EMARI

1
, Izzat Mahmoud ALSMADI

2

1
Computer

science department, IT faculty, Yarmouk University, Irbid, Jordan

2
Computer information system department, IT faculty,

Yarmouk University, Irbid, Jordan

salam.ammari@gmail.com, ialsmadi@yu.edu.jo

In software engineering, several formal models and tools are proposed for defining system

requirements and constraints formally. Such formal definitions can help in the automatic

checking and verification for them. It can also help in the automatic test case generation,

execution and verification. In this paper, we will demonstrate and evaluate the usage of Spec

Explorer from Microsoft for defining and checking examples of software controlled system

such as cruise control. Such formal requirements can be eventually embedded in the

developed system or can help in exposing important elements to test in the testing stage or

through the usage of the application.

Keywords: Model-Based Testing, Spec Explorer, FSM Models, Software Controlled Systems

Introduction

Software testing is the process of

executing software to determine if it works

correctly and according to the specified

requirements. Software testing can be manual

or automatic. These days software

applications are increasing in complexity and

size which make manual testing not efficient

because it takes a significant time and effort

of the project resources. Automation is the

integration of testing tools into the test

environment in such a manner that the test

execution, logging, and comparison of results

are done with little human intervention. A

testing tool is a software application which

helps automate the testing process. Although

automatic testing reduces time and effort

however, not everything in the software can

be tested automatically. There are many

reasons why some parts of the software can’t

or can hardly be tested automatically [1] [2].

Model-Based Testing (MBT) “is an evolving

technique for generating test cases

automatically from a behavioral model of a

system under test” [17]. By applying MBT,

defects can be found earlier in the

development process compared to the use of

manual testing practices. The MBT includes

three main stages, first test case generation

from models according to a given test

selection criterion, second test execution, and

third the test evaluation [1] [3]. The second

and third stages are often combined leading

to the so called on-the-fly test case

generation methods. If main stages work

separately it is called batch test case

derivation. MBT has four approaches for

automatic testing; a random testing approach,

goal oriented approach, intelligent approach

and path oriented approach [5].

The growing use of Graphical User

Interfaces (GUIs) in software led to the focus

on GUI testing. Until now development

coverage criteria for GUI’s have not been

addressed [6]. Testing through GUI is more

complex. We will elaborate in the next

section some of the challenges of using GUI

model based testing.

MBT is a testing technique where test cases

are generated from a model of the system.

There are several MBT tools that can

automate the generation of test cases from a

behavioral model, including test oracles that

can determine whether the system under test

behaves correctly at the execution of the test

cases. In this paper we will elaborate in one

of those tools; Spec explorer tool developed

at Microsoft Research.

The rest of the paper is organized as the

following: Section II summarizes some of the

literature review, discusses MBT, GUI and

FSM models. Section III describes goals and

approaches and discusses model-based

testing tool Spec Explorer. A case study is

1

6 Informatica Economică vol. 15, no. 3/2011

presented in the section. Section IV includes

conclusion and future work.

2 Literature Review

Testing is an essential part of software

project development. With the increase of

software complexity, the challenges of

testing are increasing. Testing occurs in all

states of the software development process.

The testing phases try to answer six

questions. These questions provide very

simple and intuitive characterization schema

of software testing activities. WHY: why is it

that we make the observations? This question

answers test objectives and reasons that led

to the need for testing. HOW: which sample

or parts do we observe, and how do we

choose those parts? This is the problem of

test selection. Methods of implementing the

testing process and selecting which approach

to follow are not always a straightforward

decision to make. HOW MUCH: how large

is the sample and how much to test? This

question can be better answered after

knowing the answers for the previous

questions. WHAT: what is it that we

execute?

This question concerns system under test,

execution testing on system as a whole, or

focusing only on a subset or a part of it (i.e.

unit test, component/ subsystem test,

integration test). WHERE: where do we

perform the observation? This question can

be accomplished in a simulated environment

or in the target final context or application.

This question assumes the highest relevancy

when it comes to testing embedded systems.

WHEN: when is it in the product lifecycle

that we perform the observations? The stage

of the software development can have a

significant impact on what we test and how

we perform testing activities [14].

Manual testing is usually error-prone, time

and resources’ consuming. MBT approach is

to model the desired behavior of the

implementation under test (IUT). The

objective of MBT is to be able to

automatically generate high-quality test

suites from models thus implementing

automated test execution. Features provided

by MBT, allow test automation and allow for

automatic generation of a large number of

test cases from models. MBT is a good

approach to improve quality and

effectiveness of testing and also reduce cost

of testing. MBT depends on formal methods

and verification techniques when describing

the characteristics of the system or problem

domain [9].

Automatic testing effort is divided into three

major parts: test case generation, execution

and test evaluation. A test case is represented

by three major attributes: [I, S, O]. (I) is the

input data to the test case, (S) is the object or

system state or any pre conditions required to

start executing the test case, and (O) is the

expected output data (e.g. post conditions).

Automatic test case generation requires

formal or semi-formal specifications to select

test cases to detect faults in code

implementation.

MBT is technique for automatic generation

testing using models. A model is simplified

depiction behavior software. There are

several model based approaches proposed in

software design. Selecting one model

depends on software behavior or structure

description, on the test-generation algorithm

(criteria) and on tools that provide supporting

infrastructure for the tests. The selection of

the MBT approach for software product it’s

hard, this case lead to the testers have

knowledge regarding to MBT approach.

Some models describe behavior source code

structure such as control flow and data flow.

Some models describe external so called

black-box behavior such as state machine [7]

[8].

Today, many software products provide a

Graphic user interface (GUI). A typical GUI

gives many degrees of freedom to an end-

user, leading to an enormous input event

interaction space that needs to be tested. It

should be model to ensure correct operation

done for GUI. GUI testing can be used to

confirm the validity of a sequence of event

on one or more GUI widgets. In GUI testing,

testing interacts only through interfaces.

Current GUI testing techniques used in

practice are incomplete, ad hoc, and partially

Informatica Economică vol. 15, no. 3/2011 7

automatic. Some GUI models for testing are

expensive to create and have limited

applicability. Models and techniques have

been developed to address the automation of

specific aspects of the GUI testing process is

not developed for a full GUI [12]. There are

many graph models to model the user

interface based on specific aspects. We will

describe two graph models, event-flow graph

and control flow graph.

Event-flow graph (EFG) is a GUI model

which can be used for GUI testing. It

represents events and event interactions and

represents all possible sequences of events

that can be executed on the GUI. Event-flow

model contains from two important parts to

present user profiles and check for run-time

consistency of the GUI. The first part

encodes each event in terms of preconditions,

such as the changes to the state after the

event has executed. The second part

represents all possible sequences of events

that can be executed on the GUI as a set of

directed graphs. Each event represent how

modify on state. State of each widget (e.g.

buttons, textbox, label, menu) and container

(e.g. panel, group box, frame) all widgets and

containers will be referred to as GUI object.

Each object represent by properties such as

location and background so event from GUI

is change the state of objects. The events E =

{e1, e2, …, en} implement by function can

change GUI from one state to another which

this states may be infinitely of the GUI. An

EFG model is represented by < V, E > each

vertex represents an event (e.g. click on edit)

and each edge from vertex X to vertex Y

explains how to reach Y from X directly

[10].

In EFG, the total number of all possible event

sequences in any complex GUI can be very

large. GUI can be decomposed into several

GUI sub components each one represents a

unit of test. The interactions among

component are captured by a representation

called the integration tree [6]. In an online-

exam system (as an example of an EFG), the

online-exam system has many components

for different purposes. There are components

for user interactions: main, edit user

information, select the test, print the results,

change password, reviewing the given

response, resetting of forget password) [15].

In Figure 1 we showed part of event-flow

graph, event sequence for GUI very large

impractical to test. The component which is

used more frequently is deeper in tree

integration. Figure 2 shows tree integration

for Figure 1.

Fig. 1. An EFG for part of an Online-Exam system

8 Informatica Economică vol. 15, no. 3/2011

Fig. 2. A tree integration for part of an Online-Exam system

Control flow Graph (CFG). CFG model is

drawn to understand the complexity in

software in terms of possible decisions and

branches. CFG is a direct graph that contains:

nodes, edges, entry node and exit node where

entry and exit nodes should be different and

distinguished. In a simple example for a

multiple choice automatic grading program

where a user is prompted by a question and

choices, a correct choice increment the user

grade and an incorrect answer may deduct

from their grade (which is not usually the

case). Figure 3 shows the CFG for the

following pseudo code.

1. char choice = null;
2. bool end = false;
3. While (end != true) {

4. If (event_click_OnFinishExame() = =

true)

5. end = true;
6. Select choice ;
7. If (compare_choices(choice) = =

true)

8. Add_to_score();

9. else
10. deduct_from_score(); }

11. print_Result();

CFG encodes all possible execution paths in

a program. EFG represent all possible

sequence of events that can be execute on

GUI. There are lacks on current techniques,

long event sequences, lack a systematic

exploration of the impact of context-aware

GUI interaction testing on fault detection and

lack test adequacy criteria [12].

Fig. 3. A simple control flow graph

Generation for a question answering

system

This research focuses on the important model

used in object-oriented software testing is

FSM (Finite State machines) [1]. This model

depends on scenario a tester applies an input

and then appraises the result then select

another input depends on pervious result.

State machines (directed graphs) are ideal

models for describing sequences of inputs,

complex software combined from large state.

FSM also known as finite automata is one

that has a limited or finite number of possible

states. FSM can be used both as a

development tool for approaching and

solving problems and as a formal way of

describing the solution for later developers

and system maintainers. FSM general form

Informatica Economică vol. 15, no. 3/2011 9

(I, S, T, F, L), where (I) is inputs of the

system, (S) is set of all states of the system,

(T) is transition occurs by function, (F) is

final state, (L) is the state into which the

software is launched. One state at one time,

FSM has two main state; initial state to start

and final state the end FSM. Finite state

models are an obvious fit with software

testing where testers deal with the chore of

constructing input sequences to supply as test

data [8].

Usually in FSM program the state represent

some aspects of the control follow program,

for example the state in GUI may be the

current screen on display. FSM has some

limitations, First state explosion where the

number of sates in FSM grows exponentially.

The second limit test case explosion, the

coverage criteria in FSM states and transition

produces a huge number of case tests. The

third limit black-box testing of concurrent

programs is the presence of non-determinism

in the expected behavior of the program.

Final limit skills for define FMS model and

tool work with state and test case

3 Goals and Approaches

In order to evaluate Spec explorer tool in

software testing. Spec Explorer is first

described in a demo using Cruise control

system as a case study. Spec explorer will be

used to describe the system and show

possible areas to verify.

Microsoft’s Spec Explorer

Spec explorer is a model-based testing tool, it

extends Microsoft Visual studio creating by

software Engineering group in Microsoft

research for modeling software behavior, has

been used since 2003. Model program

defines the state variables and rules written in

C#.net or any other language in .net and

abstract state machine which write in Cords

scripts (a set of coordination) for configuring

model exploration and testing as well as

composing scenarios. We discuses spec

explorer 2010 last version for Microsoft, it

analysis models graphically, checking the

validate models and generating test cases

from models [16] [17] [19].

Other systems have user class for allow

specify user register in system, user make

two primary operation login and logout.

Class user has attributes (userID, userName,

password, and name) and methods

(getUserID, setUserID, getUserName,

setUserName, getPassword, setPassword,

getName, setName, login, logout). We using

spec explore for test operation login without

care for implementation. The user must have

correct username and password to even be

able to enter the system [15]. Scenario login:

the user enters username and password then

login then the system verify login. We

assume tow conditions for scenario login,

first condition password length grate than 5

characters and second condition both

username and password must be correct.

A login scenario login is written in cord

script is binding through rules which there

are in another file (model program file) in

.net language. “machine” is keyword in cord

script, it use to define scenario to do test

generation through exploration process. Cord

script use process algebra to express the

scenario such as

Union operator (|), sequence operator (;),

Synchronized Parallel Composition operator

(||)…etc [19]. Figure 4 see “machine

AccessClintToServer” display scenarios.

Machine “ModelPrograme” determent path

model file which contain rules and actions

for test. Machine “SliceModelPrograme”

invoke machine “AccessClintToServer” to

work parallel with machine ModelPrograme.

10 Informatica Economică vol. 15, no. 3/2011

Fig. 4. Piece code from cord script file

Figure 5 present the result for Figure 4 by

FSM model. The result has 19 transitions and

15 states where (S0) start state of gray color,

state (S16, S18) wrong state of red color and

states (S27, S28) final state of green color.

Table 1 explains briefly the result. With

simple scenario and simple rule the spec

explorer display all possible paths as FSM

model.

Fig. 5. An FSM model visualized by Spec Explorer

Table 1. Explain each transition between two states for result in Figure 5

Si Sj Is correct operation

S0 S4 yes user name register in system

S4 S18 no password is null character

S4 S17 yes password is correct

S17 S27 yes Login is true

S4 S16 no password is wrong

S0 S5 no user name with null value

S5 S21 no password is null value

S21 S28 no Login is false

S5 S20 yes Password is correct

S20 S28 no Login is false

S5 S19 no Password is wrong

S19 S28 no Login is false

S0 S6 yes Set user name isn’t register in system

machine ModelProgram() : Main
{
construct model program from ParameterCombination
where scope="SystemSample.SystemModelProgram"
}
//Determent State machine
machine AccessClientToServer(): Main
{
 (Set_UserName;Set_Password)
 ;Login
}
machine SlicedModelProgram() : Main where ForExploration = true,
TestEnabled =true
{
AccessClientToServer || ModelProgram
}

Informatica Economică vol. 15, no. 3/2011 11

S6 S24 no Password is null value

S24 S28 no Login is false

S6 S23 yes Password is correct

S23 S28 no Login is false

S6 S22 no Password is wrong

S22 S28 no Login is false

A case study

In this section, we investigate the benefits of

using Spec explorer in software testing.

Using Cruise Control System (CCS), we

want to explore the behavior of the system to

see if we can discover anomalous behavior in

spec explorer tool. CCS system keeping an

aromatic traveling at a certain speed, it

recode the current speed and maintains

automatically. CCS controller three buttons

(on, off, resume) if state engine is off then

CCS is disable. When state engine is on CCS

have new speed setting, engine is running

and CCS on the system start record speed if

press (accelerator, off or break) CCS is

disable but it return to previous speed setting

if press resume button, Figure 6 displays

CCS in LTS (Labeled Transition System)

[20].

engineOn

engineOff

on

speed

engineOff

on

off

brake

accelerator

speed

engineOff

on

resume

speed
0 1 2 3

Fig. 6. Cruise Control system in LTS [20]

We will use spec explorer tool to test cruise

control system specifications. To get results

from spec explorer in FSM model we have

created a project which contains the model.

The model consists of two files linked

together, the first file

CruiseModelProgram.cs, C# file to define

the model program, condition and

configuration parameters which work with

second file (see appendix B). The second file

is Config.cord, cord script file to define

machine and explorer it (see Figure 7 and

appendix A).

Fig. 7. Defining a machine in cord script

Figure 8 displays results in Spec explorer

when explorer machine Cruise_Controller()

through apply appendix (A and B). Table 2

explains briefly the result in Figure 8. In each

state we can detriment state control and state

speed. State control is a passive entity, it

reacts to events. It as a monitor may be

(Inactive, Active, Cruising or Standby). State

speed an active entity, when enabled, a new

thread is created which periodically obtains

car speed and sets the throttle may be

machin machin_name() : name_config
{
 // write scenario methods by use
process algebra between methods
}

12 Informatica Economică vol. 15, no. 3/2011

(Disable, Enable). Figure 9 display results

through apply appendix (A and C) which

only take state control. Table 3 explains

briefly the results in Figure 9.

Fig. 8. Cruise Control system in Spec explorer

Fig. 9. Cruise Control system in Spec explorer

Table 2. Explain each transition between two states for result in Figure 9

Si Sj operation Control state Speed state

S0 S2 engineOn Active Disable

S2 S4 on Cruising Enable

S4 S0 engineOff Inactive Disable

S4 S9 accelerator , off or brake Standby Disable

S9 S12 on or resume Cruising Enable

S12 S9 engineoff Standby Disable

Informatica Economică vol. 15, no. 3/2011 13

Table 3. Explain each transition between two states for result in Figure 9

Si Sj operation Control speed

S0 S2 engineOn Active

S2 S0 engineOff Inactive

S2 S5 on Cruising

S5 S5 on Cruising

S5 S9 accelerator , off or brake Standby

S5 S0 engineOff Inactive

S9 S12 On or resume Cruising

S12 S9 accelerator , off or brake Standby

S12 S0 engineOff Inactive

4 Conclusion

Model-based testing (MBT) is usually used

in testing for the automatic generation of test

cases (i.e. based on the defined model). This

research used Spec Explorer tool to formally

define system requirements and show how

test cases can be automatically generated

from this model. As a sequential system with

several states, and constraints, cruise control

system case showed that once requirements

are fully collected and correctly defined, a

formal model can be very effective in

automatically generating test cases to

evaluate an application. Formal models can

be also used to create the design and possibly

find weakness in the design before reaching

the implementation and testing stage where

fixing such problems can be expensive in

terms of time and resources.

References

[1] S.K. Swain, S.K. Pani, D.P. Mohapatra,

“Model based object-oriented software

testing,” ACM, 2010.

[2] S. Koirala, S. Sheikh, Software Testing

Interview Questions, Infinity Science

Press LLC, 2008.

[3] M. Mlynarski, B. Güldali, M. Späth, G.

Engels, “From Design Models to Test

Models by Means of Test Ideas,” ACM,

2009.

[4] K. Ross, Practical Guide to Software

System Testing, K. J. Ross &

Associates Pty. Ltd., 1998.

[5] H. Tahbildar, B. Kalita, “Automated

Test Data Generation Based On

Individual Constraints and Boundary

Value,” IJCSI, 2010.

[6] A.M. Memon, M.L. Soffa, M.E.

Pollack, “Coverage Criteria for GUI

Testing,” ACM, 2001.

[7] A.C.D. Neto, G.H. Travassos,

“Supporting the Selection of Model-

based Testing Approaches for Software

Projects,” ACM, 2008.

[8] I.K. El-Far, J.A. Whittaker, Model-

based software testing, Florida Institute

of Technology, 2001.

[9] J. Tretmans, F. Prester, P. Helle, W.

Schamai, Model-Based Testing 2010:

short Abstract, ScienceDirect, 2010.

[10] A.M. Memon, An event-flow model of

GUI-based applications for testing,

Wiley InterScience, 2007.

[11] I. Wenzel, B. Rieder, R. Kirner, P.

Puschner, “Automatic Timing Model

Generation by CFG Partitioning and

Model Checking,” IEEE, 2005.

[12] X. Yuan, M.B. Cohen, A.M. Memon,

“GUI Interaction Testing: Incorporating

Event Context,” IEEE, 2010.

[13] G. Friedman, Qagalit, “Projected State

Machine Coverage for Software

Testing,” IEEE, 2002.

[14] A. Bertolino, “Software Testing

Research: Achievements, Challenges,

Dreams,” IEEE, 2007.

[15] http://www.scribd.com/doc/22746893

/Online-Examination-Project-Report-

Documentation-Only

[16] M. Sarma, P.V.R. Murthy, S. Jell, A.

Ulrich, “Model-Based Testing in

Industry – A Case Study with Two

MBT Tools,” ACM, 2010.

[17] M. Veanes, C. Campbell, W.

Grieskamp, W. Schulte, N. Tillmann,

14 Informatica Economică vol. 15, no. 3/2011

L. Nachmanson, “Model-Based Testing

of Object-Oriented Reactive Systems

with Spec Explorer,” Microsoft

Research, 2007.

[18] I. Alsmadi, S. Samarah, A. Soefan, M.

AL Zamil, “Evaluate and Improve GUI

Testing Coverage Automatically,”

IJSE, 2011.

[19] Microsoft website, Available:

http://msdn.microsoft.com/en-

us/library/ee620411.aspx, 2011.

[20] J. Magee, J. Kramer, Concurrency:

State Models and Java Programs.

Wiley, 1999.

Salam AL-EMARI, is a master student in the computer science department at Yarmouk

University in Irbid, Jordan. Her research interests focused on artificial intelligent, formal

methods, and software engineering.

Izzat Mahmoud ALSMADI is an assistant professor in the department of

computer information systems at Yarmouk University in Jordan. He obtained

his Ph.D degree in software engineering from NDSU (USA). His second

master in software engineering from NDSU (USA) and his first master in

CIS from University of Phoenix (USA). He had B.sc degree in

telecommunication engineering from Mutah University in Jordan. Before

joining Yarmouk University he worked for several years in several

companies and institutions in Jordan, USA and UAE. His research interests include: software

engineering, software testing, e-learning, software metrics and formal methods.

