
62 Informatica Economică vol. 15, no. 1/2011

Public Transport Route Finding using a Hybrid Genetic Algorithm

Liviu COTFAS, Andreea DIOSTEANU
Academy of Economic Studies, Bucharest, Romania
liviu.cotfas@ase.ro, andreea.diosteanu@gmail.com

In this paper we present a public transport route finding solution based on a hybrid genetic
algorithm. The algorithm uses two heuristics that take into consideration the number of trans-
fers and the remaining distance to the destination station in order to improve the convergence
speed. The interface of the system uses the latest web technologies to offer both portability
and advanced functionality. The approach has been evaluated using the data for the Buchar-
est public transport network.
Keywords: Route Finding, Evolutionary Algorithms, Hybrid Genetic Algorithm

Introduction
Standard shortest path algorithms allow

finding the shortest routes in networks featur-
ing static and deterministic links. Dijkstra [1]
and A* algorithms are widely used and con-
sidered the most efficient algorithms for the
classic route finding problem. Several issues
exist when applying such algorithms to pub-
lic transport route finding for which links are
time-dependent.
Several approaches based on modified
Dijkstra algorithms like A* currently exist as
well as algorithms that focus on speed, rather
than on obtaining an exact solution. In [2] the
authors present a genetic algorithm, called
RGEAwK for identifying routes in the public
transport network. To improve performance,
the algorithm uses a transfer matrix and a
minimal distance matrix. As in many other
systems, the user is only allowed to search
for routes between specified stations. In
many cases the user might not know which
stations close to the start and end points of
his journey should be chosen in order to ob-
tain an optimal route. Statically storing the
transfer nodes is also used in [3]. A drawback
for this approach is that the system has to
compute large transfer areas as different us-
ers can choose different maximum walking
distances.
In this paper we present a hybrid genetic al-
gorithm that uses heuristics to improve the
time required for generating a solution. The
algorithm automatically determines the best
route from the stations that are close to the
user’s location. Transfer areas are dynami-

cally identified by taking into consideration
the maximum walking distance specified by
the user and the amount of walking already
included in the route. We have chosen a heu-
ristic approach because users need to find
routes in near real-time. Moreover, using ge-
netic algorithms offer the advantage of auto-
matically generating several possible solu-
tions.
The rest of paper is organized as follows: the
second section includes a short presentation
of evolutionary algorithms, while in the third
section we introduce an efficient hybrid ge-
netic algorithm. The fourth and fifth sections
present mTripAssistent, a novel itinerary re-
commender system based on semantic web
service composition. The system generates
recommendations for Points of Interest – POI
using a collaborative filtering algorithm that
takes into account the user profile and the
current context. The user can easily identify
routes to the POIs using the algorithm de-
scribed in this paper. The last section con-
cludes the article and presents the future re-
search guidelines.

2 Evolutionary Algorithms
Genetic Algorithms – GA [4] are a particular
class of Evolutionary Algorithms – EA, that
use techniques inspired by evolutionary biol-
ogy such as inheritance, mutation, selection,
and crossover. Other related algorithms, also
used in optimization problems are Simulated
Annealing – SA, Ant Colony Optimization –
ACO and Particle Swarm Optimization –
PSO. Their application scope includes eco-

1

Informatica Economică vol. 15, no. 1/2011 63

nomics, game theory, pattern recognition,
neural networks and fuzzy theory. Genetic
Algorithms have also been applied success-
fully for private car route finding like shown
in [5].
The two most important aspects of any ge-
netic algorithm implementation are the fit-
ness evaluation function and the reproduction
scheme that must be mutually compatible.
Genetic algorithms try to eliminate the bad
traits from the population using the process
of selection. The good traits survive and are
mixed by crossover to form potentially better
individuals. The mutation operation ensures
that diversity is not lost in the population, so
the algorithm can continue to explore the so-
lution space. Several approaches exist in re-
spect to how the population is built start-
ing from the previous one, . The Queen-
Bee [6] approach relies on combing all the
individuals in the population with the one
that has the highest fitness value. The Elitist
approach automatically preserves all the best
chromosomes from the previous generation
and discards the rest. All the new chromo-
somes are created using mutation and cross-
over from the selected individuals.
CHC introduced by [7] was proposed as a
GA that combines the advantages of preserv-
ing the best individuals found so far between
generations with a highly disruptive cross-
over in order to produce offsprings that are
maximally different from their two parents.
Most implementations add a new bias against
combing individuals which are more similar.
Instead of using the mutation operation for
assuring diversity, a restart process is used
each time the population converges.
Given the fact that many optimization prob-
lems, including the route finding one, can
have multiple conflicting objectives, several
approaches based on genetic algorithms have
been proposed [8]. The easiest solution is to
combine the individual objective functions
using utility theory or the weighted sum
method. In practice, it can be difficult to pre-
cisely and accurately select the weights. A
more complex approach is to determine the
entire Pareto-optimal set of solutions or a
sub-set of it. The Pareto optimal set of solu-

tions consists of all non-dominated solutions,
for which any improvement of one of the ob-
jectives, means a decrease in at least another
objective.

3 Route finding using a Hybrid Genetic
Algorithm
Finding routes in public transport networks
presents several particularities compared to
normal route finding in graphs such as:
 public transport network contain

transfer areas, representing areas where
travelers can walk on foot between
stations;

 transport modes have variable time
schedules that must be taken into
consideration in order to minimize
waiting time;

 modes can be of different types includ-
ing subway, bus, etc. and can have dif-
ferent prices;

Public transport networks can be seen as
graphs in which edges can be traversed only
at certain moments in time based on transport
modes schedule. Due to the fact that the net-
work is time-dependent, the problem of iden-
tifying routes with minimum travel time in
the public transport network is NPc [9]. The
network can be represented as a directed
graph as follows:

 (1)
where:

is the set of vertices representing the public
transport stations. Each node is associated a
natural number from 1 to , representing

the number of the station.

is the set of directed edges representing the
links between stations.
We also define by the set of modes in
the public transport network. Figure1 pre-
sents the public transport network in Bucha-

64 Informatica Economică vol. 15, no. 1/2011

rest with over 2800 stations, as well as a transfer area.

Fig. 1. a) The public transport network in Bucharest b) A transfer area

The inputs of the algorithm are the start time

, the start location as GPS coordinates ,
the destination location as GPS coordinates

 and the maximum walking distance
. The first step is to identify the sta-

tions close to that can be used as starting
points for the journey.
In many cases choosing the station that is
closest to the user position, leads to sub op-
timal results. Therefore in order to identify
the possible start stations for the itinerary, we
first find the closest station to the destination

 by calculating m . By
 we represent the walking distance

between two locations. Using geographic
functions, is searched only in the circle
area defined by . We than compute

the set of
possible start stations.
Because in large networks the algorithm can
require a significant number of generations to
reach a good solution, we use two heuristics
to enhance the convergence speed:

 Minimum distance: Moving to a station
closer to destination offers higher
chances of finding a good route. There-
fore, when constructing routes, we will
choose the station that will offer the
maximum decrease in the Euclidian dis-
tance to the destination with a probabil-
ity . The A* algorithm
uses a similar approach to improve the
speed as compared to the Dijkstra algo-
rithm.

 Minimum number of transfers: In
many cases, transfers increase both the
walking distance and the total travel time

. Therefore each time we can make a
transfer to other stations, around the cur-
rent one, we will make transfer with a
probability .

Fig. 2. Route finding using the Genetic Algorithm

Informatica Economică vol. 15, no. 1/2011 65

The main steps of the algorithm are presented
in Figure 2. The algorithm is run until a
maximum number of generations, GMG is
reached or until the best found solution
doesn’t change for GCG consecutive genera-
tions. Depending on the purpose GMG can be
adjusted either for accuracy or speed. In or-
der to reduce the number of steps we always
preserve the best chromosomes from one
generation to the other. This approach is also
known as Elitist Genetic Algorithm – EGA.
Therefore we define by and the normal
population and the population of non-
dominated solutions in generation , where

. We present below the steps needed
to generate the itinerary.
Initialization: For , we create the ini-
tial population , with a number of
routes called chromosomes. We also initial-
ize . In order to limit the number of
required algorithm iterations, all the routes in
the initial population are generated valid.
From each possible start station we generate
a number of routes using the above
mentioned heuristics.
We consider that a route valid if it starts from
a station that belongs to the set , it does not
include cycles and the total walking distance
is smaller than . The individual
routes are called chromosomes and the routes
between consecutive stations are called
genes. Therefore the optimality of a chromo-
some is characterized by the composing
genes and their order.

Example: C1 = (1, 2, 6, 9, 4); C2 = (1, 8, 9,
4); C3 = (1, 5, 6, 2, 3, 4);

Evaluation: We evaluate all trips based
on the following three criteria. For route j we
compute the number of changes, the
travel time and the total walking dis-
tance. Transfers are not separately taken into
consideration in the evaluation step because
they are evaluated based on the components,
a line change and walk distance, that both af-
fect the total time of the route.
Selection: We have chosen an elitist ap-
proach in which we copy all non-dominated

solutions from in . We remove all other
solutions from and we automatically in-
clude all solutions from in . Using
mutation and crossover we generate

solutions that are added to in
order to have .
Mutation: Adds random variation to the
evolving population. We randomly choose 2
stops in the route and we remove all the links
between them. We than complete the itiner-
ary by generating a new route between the
two stops.

Example: C2 = (1, 5, 6, 2, 3, 4)  C*2

= (1, 5, 7, 4)

Crossover: Combines the features of two
parent chromosomes to form new children by
swapping corresponding route segments of
the parents. We first randomly select two sta-
tions that are common in both parent routes.
We than swap the route segments between
the stops. Afterwards, we run a repair proce-
dure to eliminate any cycles that might have
appeared in order to maintain the routes
valid.

Example:

C1 = (1, 2,
6, 9, 4)



C*1 = (1, 2,
6, 2, 3, 4)

C3 = (1, 5,
6, 2, 3, 4)

C*3 = (1, 5,
6, 9, 4)

The results have been obtained on the public
transport network in Bucharest with over
2800 stations. 82 lines, representing almost
the entire network of public transport net-
work, were taken into consideration for the
analysis. Figure 3 compares the evolution of
the best fitness value over 40 generations
when using the Classical GA approach ver-
sus the Hybrid one that uses the minim dis-
tance and minimum number of transfer heu-
ristics. It can be seen that the hybrid ap-
proach in which and

 have been used con-
verges faster and offers better results in a
smaller amount of time.

66 Informatica Economică vol. 15, no. 1/2011

Fig. 3. Comparison between the convergence speed for Classic and Hybrid GA

In order to evaluate the performance, random
sets of stations have been selected and for
each set both algorithms have been run 10
times. The combined results are presented in
the figure above.

4 Design and Implementation Architecture
The proposed solution relies on a multi-tier
paradigm for both the server and the client
implementations as shown in Figure 4. Even
though a client only architecture would offer

several benefits, such as the possibility to
work entirely offline, it is not a feasible op-
tion for our approach due to the big amounts
of data that are used by the recommendation
algorithm. Therefore, we have chosen a
mixed approach in which the resource inten-
sive computations are performed on the serv-
er, while the simple ones are performed di-
rectly on the client. Client implementations
rely on local persistence of data in order to
avoid unnecessary server requests.

Fig. 4. mTripAssistent multi-layer arhitecture

Section 5 presents a client implementation
based on HTML5, using WebSQL as a client
persistence approach.

5 Mobile Web User Interface
As shown in the previous section, the pro-
posed architecture implements an Interface
Layer, supporting HTTP requests, Web Ser-
vice Calls and Socket Connections. Thanks
to the multiple communication methods sup-
ported by this layer, client side applications

can be implemented using a wide array of
technologies.
A common problem for mobile application
developers is the increasing fragmentation of
the mobile device market in which a large
number of manufacturers use several differ-
ent operating systems. As each operating sys-
tem requires a different development ap-
proach, the cost and time needed to build ap-
plications increases. Even though, Java Mi-
cro Edition [10] was considered for a long

Informatica Economică vol. 15, no. 1/2011 67

time the solution for creating platform inde-
pendent applications for mobile devices, it
currently doesn’t support the iPhone and An-
droid mobile operating systems. Using stan-
dard web technologies to create applications
is currently emerging as a solution to develop
applications that run on all mobile platforms.
The reference client implementation for
mTripAssistent shown in Figure 5 relies on
the latest web technologies such as WebSQL

[11], WebStorage [12] and Offline Applica-
tion Cache to offer portability and a rich user
experience. All three technologies are impor-
tant parts of the new HTML5 standard [13].
In the future, the local persistence can be
changed from WebSQL to Indexed Database
API [14]. In order to determine and monitor
the position of the user, the W3C GeoLoca-
tion API [15] has been used.

Fig. 5. mTripAssistent interface developed using HTML 5

Because the schedule provided by the public
transport companies can differ from the real
one due to several reasons, a crowd sourcing
approach is under implementation in order to
determine the actual travel time between sta-
tions at different hours and week days. The
information is automatically collected by the
client application and transferred to the serv-
er component of the system for aggregation.

6 Concluding remarks
In this paper we have presented a novel pub-
lic transport route finding solution. From the
architectural point of view, the proposed sys-
tem is design to support a wide array of tech-
nologies for building client side applications.
The proposed client side reference imple-
mentation, built using the latest web technol-
ogies such as WebSQL and Offline Applica-
tion Cache, delivers a uniform experience on
all the devices that support the new HTML5
standard. In the future we want to compare
the results for the current algorithm with the
results of a CHC GA implementation. Also,

more options can be include in the algorithm,
like finding routes that are close to interest-
ing Points of Interest – POI using geographic
functions to evaluate the distance.

Acknowledgement
This article is a result of the project „Doc-
toral Program and PhD Students in the edu-
cation research and innovation triangle”. This
project is co funded by European Social Fund
through The Sectorial Operational Pro-
gramme for Human Resources Development
2007-2013, coordinated by The Bucharest
Academy of Economic Studies.

References
[1] E. Dijkstra, "A note on two problems in

connexion with graphs," Numerische ma-
thematik, vol. 1, 1959, p. 269–271.

[2] A. Piwonska and J. Koszelew, “Evolutio-
nary Algorithms Find Routes in Public
Transport Network with Optimal Time of
Realization,” Transport Systems Telemat-
ics, 2011, p. 194–201.

68 Informatica Economică vol. 15, no. 1/2011

[3] C. Jun, “Route Selection in Public Trans-
port Network Using GA,” in Proc. Esri
User Conference, http://gis.esri.com
/library/userconf/
proc05/papers/pap1874.pdf.

[4] C.H. Lin, J.L. Yu, J.C. Liu, C.J. Lee,
“Genetic Algorithm for Shortest Driving
Time in Intelligent Transportation Sys-
tems,” in Proc. of the 2008 International
Conference on Multimedia and Ubiquit-
ous Engineering, pp. 402-406, 2008.

[5] C. Lin, J. Yu, J. Liu, and C. Lee, "Genetic
Algorithm for Shortest Driving Time in
Intelligent Transportation Systems,"
2008, pp. 402-406.

[6] S.H. Jung, “Queen-bee evolution for ge-
netic algorithms,” Electronics Letters,
vol. 39, 2003, p. 575–576.

[7] L.J. Eshelman and J.D. Schaffer, “Pre-
venting Premature Convergence in Ge-
netic Algorithms by Preventing Incest,”
ICGA, R.K. Belew and L.B. Booker, eds.,
Morgan Kaufmann, 1991, pp. 115-122.

[8] A. Konak, D. Coit, and A. Smith, “Multi-
objective optimization using genetic algo-
rithms: A tutorial,” Reliability Engineer-
ing & System Safety, vol. 91, Sep. 2006,
pp. 992-1007.

[9] H.M. Safer, J.B. Orlin, “Fast approxima-
tion schemas for multicriterial combina-
torial optimization”, Tehnical Report No.
3756-95. Cambridge, Massachusettes In-
stitute of Tehnology, Sloan School of
Management (1995).

[10] Oracle, "Java Me," 2011. [Online].
Available: http://www.oracle.com/
technetwork/java/javame/overview/.
[Accessed: January. 15, 2010].

[11] W3C, "Web SQL Database," 2011.
[Online]. Available: http://www.w3.org/
TR/webdatabase/.[Accessed: January. 15,
2010].

[12] W3C, "Web Storage," 2011. [Online].
Available: http://www.w3.org/TR/ webs-
torage/. [Accessed: January. 15, 2010].

[13] W3C, "HTML5," 2011. [Online]. Avail-
able: http://dev.w3.org/html5/spec/ Over-
view.html. [Accessed: January. 15, 2010].

[14] W3C, "Indexed Database API," 2011.
[Online]. Available:
http://www.w3.org/TR/IndexedDB/. [Ac-
cessed: January. 15, 2010].

[15] W3C, "Geolocation API," 2011. [On-
line]. Available: http://www.w3.org/TR/
geolocation-API/. [Accessed: January. 15,
2010].

Liviu Adrian COTFAS is a Ph.D. student and a graduate of the Faculty of
Cybernetics, Statistics and Economic Informatics. He is currently conducting
research in Economic Informatics at Bucharest Academy of Economic Stud-
ies and he is also a Pre-Assistant Lecturer within the Department of Eco-
nomic Informatics. Amongst his fields of interest are location based services,
recommender systems, geographic information systems, evolutionary algo-
rithms and web technologies.

Andreea DIOŞTEANU has graduated the Faculty of Economic
Cybernetics, Statistics and Informatics in 2008 as promotion leader, with an
average of 10. She is currently conducting research in Economic Informatics
at Bucharest Academy of Economic Studies and she is also a pre-Assistant
within the Department of Economic Informatics and .NET programmer at
TotalSoft. During the bachelor years she participated in many student
competitions both at national and international level obtaining a lot of first

and second prizes. The most important competitions she was finalist in were Microsoft
International Imagine Cup Competition, Software Design section (national finalist); Berkley
University and IBM sponsored ICUBE competition were she qualified for the South Eastern
Phase-Novatech. Furthermore, she also obtained the “N.N Constantinescu” excellence
scholarship in 2007-2008 for the entire student research activity.

	Public Transport Route Finding using a Hybrid Genetic Algorithm

