E-Commerce Audit Judgment Expertise: Does Expertise in System Change Management and Information Technology Auditing Mediate E-Commerce Audit Judgment Expertise?

Jagdish PATHAK¹, Mary LIND², Mohammad ABDOLMOHAMMADI³
¹Odette School of Business, University of Windsor, Canada
²College of Business & Economics, North Carolina A&T State University, Greensboro, NC
³Bentley College, Walham, MA
jagdish@uwindsor.ca, marylind@gmail.com, mabdolmo@bentley.edu

A global survey of 203 E-commerce auditors was conducted to investigate the perceptions about the potential determinants of expertise in E-commerce audits. We hypothesize and find evidence indicating that information technology and communication expertise are positively related to expertise in E-commerce audit judgment. We also find that system change management expertise and information technology audit expertise mediate this relationship.

Keywords: E-commerce Audit Judgment, IT Audit, Structural Equations Modeling

Introduction

This paper investigates the perceived relationship between information and communication technology expertise and electronic commerce (E-commerce) audit judgment expertise. We also investigated the effects of mediating variables such as systems change management expertise and information technology audit expertise on E-commerce audit judgment expertise.

The study is important because E-commerce has become commonplace in the United States and other countries [66] and because the advances in information and communication technology are facilitating steady growth in E-commerce. E-commerce entities are defined in this paper as those business organizations whose revenues arise significantly from E-commerce operations and whose majority of internal controls are integrated into E-commerce technology-based accounting systems. This growth presents opportunities and challenges to E-commerce auditors because specialized knowledge is needed to perform these audits. As [55] argue, in addition to knowledge of accounting and auditing, an E-commerce auditor must possess knowledge of systems, networks, and data bases. [63] argue that business-to-business (B2B) E-commerce is particularly challenging for auditors because it spans organizational boundaries that link firms through their collaborative work processes and interlinking transactions. Thus, auditors’ requisite knowledge for effective B2B E-commerce audits entails not only the nature of financial transactions and processes, but also the technologies that enable these transactions and processes to occur.

The remainder of this paper is organized in four sections. In section 2, we present a review of the literature leading to our research hypotheses. The research method is presented in section 3, followed by the structural equation modeling methodology to test the research hypotheses in section 4. The final section provides a summary and conclusions from the study.

2 Literature Review and Hypotheses

The audit expertise literature has established that possession of expertise in domain knowledge is a prerequisite for expertise in audit judgment [1] [13] [14]. Domain knowledge includes textbook knowledge, insights from practical problem solving experience, and stories and anecdotes from business cases [61]. We use this basic finding from the literature to develop the research model for the current study as presented in Figure 1. The model posits that B2B E-commerce Audit Judgment Expertise (ECAJE) is associated with the possession of Information and Communication Technology Expertise (ICTE), Information Technology Audit Expertise (ITAE), System Change Management Expertise (SCME), and E-Commerce Audit Judgment Expertise (ECAJE). These indicator variables and their expected relationships with ECAJE are described in the following sections.
Information and Communication Technology Expertise (ICTE)

The auditing literature posits that E-commerce has radically altered audit risk [35] to the point that auditors must have expertise in the domain knowledge of IT and process re-engineering [4] to be able to understand complex E-commerce audit risk factors. For example, auditors must be able to evaluate network applications [31] because electronic exchange of data between firms may result in the absence of source documents, the transaction may be initiated by a trading partner and there may be a bridging application between the two firms that generates transactions. Similarly, auditors must assess the level of E-commerce trust in terms of security risks, privacy issues, and the reliability of E-Commerce processes / transactions.

In summary, the auditing context has been transformed from simple electronic financial records to electronic media such as e-mail and chat messaging. A consequence of this transformation has been a need for continuous auditing and monitoring [2] [18]. Failure to do so may result in elevated audit risk. For example, [49] report that auditors who were reluctant to review and audit IT controls were more likely to produce incomplete reports with undetected financial misstatements. Based on this literature, we expect that Information and Communication Technology Expertise (ICTE) will be positively associated with E-Commerce Audit Judgment Expertise (ECAJE). Thus, the primary hypothesis of our study is:

H1: Information and Communication Technology Expertise (ICTE) is positively related to E-Commerce Audit Judgment Expertise (ECAJE).

H1 predicts a direct path from ICTE to ECAJE. However, as depicted in Figure 1 this path can be through intermediate expertise variables such as Systems Change Management Expertise (SCME) and Information Technology Audit Expertise (ITAE). Specifically, we predict positive relationships between ICTE and SCME (H1a) and ITAE (H1b). This reasoning indicates that ECAJE would also be positively related to
Informatica Economică vol. 14, no. 1/2010

7

SCME (H1c) and ITAE (H1d). Finally, we predict that SCME and ITAE would be positively related (H1e).

The reasons for these relationships are that audits have become computer-based and are increasingly conducted via networked communication technologies. As [22] argue, to conduct effective audits, auditors need the knowledge and experience of distance based auditing technologies. For example, [21] study of enterprise resource planning (ERP) systems expertise showed that auditors’ ERP systems expertise was related to their training in technology systems. Similarly, [12] found that B2B E-commerce auditors needed to understand the work processes at the intra-firm and inter-firm levels. COBIT also requires expertise in system and network change control and management for E-commerce audits. COBIT is a framework designed by the Information Systems Audit and Control Association (ISACA) and the IT Governance Institute, USA. Interested readers can look for further details on Control Objectives for Information and Related Technology (COBIT) on the ISACA website.

In summary, B2B E-commerce audits have become increasingly more challenging [33], requiring IT audit expertise to perform these audits. Such expertise should lessen “the risk that the auditor may unknowingly fail to appropriately modify his opinion on financial statements that are materially misstated” [19] [20] [43]. For example, continuous auditing may allow real time identification and reduction of risk [44].

3 Research Method

Variables

The ICTE variable is a proxy for the depth and breadth of knowledge, training, and experience for the auditor in E-commerce audits. Internet, extranet, and intranets are designed and devised on various communication network platforms with different layers of security [29] [47]. E-commerce auditing requires a relatively high level of understanding of information technologies for an auditor [24] [25] [26] [45] [67]. An important focus for the auditor is advanced computer systems training in B2B audit techniques [27]. Wide ranging experience, training and skills in information technologies has a positive influence on the B2B E-commerce auditors’ expertise in information and communication technology (ICT) [8] [32] [62]. Familiarity with the best practices followed in different environments regarding computing and networking helps auditors to render effective judgments [11] [30] [34] [40]. From this literature we identified the following four indicator variables for inclusion in the task instrument for this study:

- ICTE1 – the degree of expertise of the auditor in advanced computer systems concepts, methods, technologies and tools.
- ICTE2 – the degree of expertise of the auditor in application systems development.
- ICTE3 – the degree of expertise of the auditor in various operating systems concepts.
- ICTE4 – the depth of experience, training and skills of the auditor in operating systems programming tasks.

Systems Change Management Expertise (SCME) indicates the depth and breadth of knowledge and training in systems and network change management and in security vulnerabilities of client and partner organizations [9] [11] [30]. The B2B E-commerce environment is highly technology centric and changes are often necessary to increase the overall productivity of the processes [34] with change management being one of the most important controls an auditor can assess in a complex accounting information systems environment. Effective change management is also concerned with regulatory governance as described in the global technology audit guideline document of the Institute of Internal Auditors [64]. In a well managed environment, system and network monitors recognize unauthorized or inappropriate changes immediately because they violate the environment’s “signature” or normal processing balances and thresholds [53] [56]. From this discussion we identified the following two indicator variables for inclusion in the task instrument:

- SCME1 The degree of expertise of the auditor in B2B E-commerce systems and in network change management.
- SCME2 The degree of expertise of the auditor in intrusion detection, prevention and management procedures.

Information Technology Audit Expertise (ITAE) covers an auditor’s expertise in the technical details of computers, networks, security, and auditing [8] [11] [21] [51]. We identified two indicator variables to assess the level of ITAE as follows:

- ITAE1 – the degree of expertise the auditor has in the use of information systems
auditing tools, techniques and methodologies.

- ITAE2 – the degree of expertise the auditor has in auditing and review of E-commerce websites.
- Finally, E-commerce Audit Judgment Expertise (ECAJE) is the variable that indicates an auditor’s expertise in planning audits, managing audit engagements, and making judgments regarding the audit [19] [48] [58]. E-Commerce audits require expertise in computing technology related judgments including database management, networking, data communications [28] and auditing judgment including security issues.

We identified three indicator variables to measure ECAJE as follows:

- **ECAJE1** – the extent of auditor’s knowledge and training in evaluation of the relevance and materiality of planning in E-commerce auditing.
- **ECAJE2** – the extent of auditor’s skill and training in establishing a proper mix to ensure that the expertise required for conducting an E-commerce audit is included in the audit team.
- **ECAJE3** – the extent of training and experience in understanding the importance of the long term context of the technical audit decisions taken in the short term.

Task Instrument

To construct the research instrument, the indicator variables identified above were pretested using the Q-sorting methodology [50]. Q-sorting technique helps researchers in identifying *a priori* the potential understanding of instrument questions. Here either an expert panel or a group of potential respondents were provided the information about the constructs and the items that the construct were to identify. This exercise substantially improves the content validity *a priori* of these instrument items, where new indicator variables had to be developed.

Given the limited empirical work done in the area of E-commerce auditing, we used the Q-sorting technique to define the theorized construct. A panel that consisted of senior accounting majors who had cooperative (internship) and/or full time audit experience in Big-4 audit firms performed the Q-sort8F. The North-American city from which students were drawn has major branches of several manufacturing companies that are heavily into B2B E-commerce activities. We had five students assist in the pre-test of this survey. They did so in consultation with professional E-commerce auditors who were their supervisors during cooperative period. The pretest verified the proposed survey indicator variables. The final set of questions was administered to practicing E-commerce auditors using a web-based survey hosted by the first author’s university with the web link available from October 1, 2005 until December 31, 2005. The final questionnaire consisted of 38 variables, of which the indicator variables identified earlier were related to the topic of this paper. The instrument consisted of a cover page with a formal request for participation, followed by a page describing B2B E-commerce audits scenario and demographic information. Respondents were instructed to use a five-point Likert scale (strongly disagree to strongly agree) to assess each indicator variable in the questionnaire and the overall ECAJE. A recommended method of measuring response bias (see [3]) is a comparison of early responses with late responses (as proxy for non-respondents). Accordingly, we compared the early responses (80%) to the late responses. No significant non response-bias was found.

Participants

The American Institute of Certified Public Accountant (AICPA), the Canadian Institute of Chartered Accountants (CICA), the Institute of Chartered Accountants of England & Wales (ICAEW), the Institute of Chartered Accountants of Australia (ICAA), and the Information Systems Audit and Control Association (ISACA) were contacted to request participation in the study. Senior management at the five professional bodies was personally contacted since their audit members have been involved in E-commerce audit in general and B2B audit in particular. AICPA & CICA are extremely active in this E-commerce audit work. These bodies used e-mails/news letters to spread the word amongst its memberships. We asked for auditors who were professionally involved as B2B E-commerce auditors. To encourage participation, we also sent e-mails to 25 offices of “Big-4 Accounting Firms” in major cities in Europe, North America, Asia, and Australia to seek their encouragement of their professional E-commerce auditors to participate in the study.

Overall, 203 usable responses were received that provided ample sample size for data analysis of these responses, 39.90 percent (56.15 percent) had undergraduate (graduate) degrees. The exact response rate could not be determined because participation requests were sent through various channels. We received 212 responses altogether,
nine of which responses could not be used due to missing data, leaving 203 useable responses. Missing value imputations were done by indirect method using the linear regression method. This method uses missing data as dependent variable and completed data as predictors. This approach provides for greater variability with some loss/restriction on variance in comparison to other methods [23] [57] [68]. The remaining 3.95 percent had other degrees or did not specify. The average age of the sample was 39.6 years with mean B2B E-commerce audit experience exceeding six years (ranging from 0-20 years). The number of E-commerce audits conducted by the sample was quite significant, averaging 6.61 (range: 0-150) in the year 2000 or earlier and 28.11 after 2000 (range: 0-246). The significance of year 2000 is that many businesses opted for B2B E-commerce beginning in early 2000s. While over one-half of the respondents practiced in the United States and Canada, the rest practiced in other nations, such as the UK (n = 10), Japan (n = 20) or South Africa (n = 3). To assess the validity of considering the sample as one set of respondents, pair-wise T-tests were used between the North American and respondents from other countries (see Table 1).

<table>
<thead>
<tr>
<th>Survey Indicator Variables</th>
<th>Mean North</th>
<th>Mean Rest of World</th>
<th>Paired Mean Differences</th>
<th>t Value</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of expertise in advanced computer systems concepts, methods, technologies and tools ICTE1</td>
<td>3.12</td>
<td>2.99</td>
<td>0.13</td>
<td>0.68</td>
<td>0.500</td>
</tr>
<tr>
<td>Degree of expertise in application systems development ICTE2</td>
<td>3.45</td>
<td>3.22</td>
<td>0.23</td>
<td>1.30</td>
<td>0.195</td>
</tr>
<tr>
<td>Degree of expertise in various operating systems concepts ICTE3</td>
<td>3.29</td>
<td>3.04</td>
<td>0.25</td>
<td>1.38</td>
<td>0.170</td>
</tr>
<tr>
<td>Depth of experience, training and skills in operating systems programming tasks ICTE4</td>
<td>3.24</td>
<td>3.10</td>
<td>0.14</td>
<td>0.90</td>
<td>0.369</td>
</tr>
<tr>
<td>Degree of expertise you have in the use of information systems auditing tools, techniques and methodologies. ITAE1</td>
<td>4.58</td>
<td>4.60</td>
<td>-0.02</td>
<td>-0.20</td>
<td>0.842</td>
</tr>
<tr>
<td>Degree of expertise you have in auditing and review of E-Commerce websites. ITAE2</td>
<td>4.16</td>
<td>4.25</td>
<td>-0.09</td>
<td>-0.75</td>
<td>0.468</td>
</tr>
<tr>
<td>Degree of expertise in B2B e-commerce and in network change management. SCME1</td>
<td>4.27</td>
<td>4.09</td>
<td>0.17</td>
<td>1.54</td>
<td>0.127</td>
</tr>
<tr>
<td>Degree of expertise in intrusion detection, prevention and management procedures. SCME2</td>
<td>4.21</td>
<td>4.20</td>
<td>0.01</td>
<td>0.06</td>
<td>0.956</td>
</tr>
<tr>
<td>Extent of your knowledge and training in evaluation of the relevance and materiality planning in E-Commerce auditing. ECAJE1</td>
<td>4.12</td>
<td>4.23</td>
<td>-0.12</td>
<td>-1.17</td>
<td>0.246</td>
</tr>
<tr>
<td>Extent of your skill and training at establishing a proper mix to ensure that the expertise required for conducting an E-Commerce audit is included in the audit team. ECAJE2</td>
<td>3.74</td>
<td>4.18</td>
<td>-0.44</td>
<td>-3.43</td>
<td>0.0009*</td>
</tr>
<tr>
<td>Extent of training and experience in understanding the importance of the long term context of the technical audit decisions taken in the short term. ECAJE3</td>
<td>4.34</td>
<td>4.24</td>
<td>0.09</td>
<td>0.78</td>
<td>0.435</td>
</tr>
</tbody>
</table>

* p < .001

These comparisons revealed no significant differences between the two groups with only one exception. The indicator variable “Extent of your skill and training at establishing a proper mix to
ensure that the expertise required for conducting an E-commerce audit is included in the audit team” indicated a lower mean value (3.74) for North American countries as compared with other countries (4.18). While we acknowledge this difference, based on the fact that the remaining 10 indicator variables were not different, we use the entire sample as a homogeneous group for data analysis. Two hundred and one respondents reported training in information technology (IT) audits; and 98 percent of those respondents were holding certification awarded by the ISACA or similar agencies in their respective country.

4 Results
Structural equation modeling was used to investigate the relationship of the specific indicator variable to their intended latent variables (i.e., ICTE, SCME, ITAE, and ECAJE). Two assumptions of structural equation modeling using maximum likelihood estimation are multivariate normality and model identification or determinacy [59]. Examination of plots of the indicator variables showed that they were distributed normally and the bivariate scatter plots were linear and homoscedastic. Also as reported in Table 2, examination of the inter-correlations between indicator variables did not reveal multicollinearity. Structural equation modeling (SEM) was used to assess the degree to which indicator variables loaded on the theorized latent variables. As recommended by [6] and [36], each latent variable was modeled first in isolation, then in pairs, and as a collective network. This method of evaluation has an advantage of achieving the fullest evidence of efficacy of the measurement model and reduces potential confounding to a greater extent in the composite structural equation modeling. The Analysis of Moments Of Sample (AMOS) of SPSS (v14 r14.0.0) was used as the analytical tool to test statistical assumptions and the estimation of the measurement and structural equation models described in the paper. Partial Least Square-Graph (PLS-Graph) version 03 was also used to identify individual t-values, and composite factor reliability (ρ_c) for the individual constructs.

<table>
<thead>
<tr>
<th>Items</th>
<th>ECAJE2</th>
<th>ICTE1</th>
<th>ITAE2</th>
<th>ITAE1</th>
<th>ICTE2</th>
<th>ICTE3</th>
<th>ICTE4</th>
<th>ECAJE1</th>
<th>ECAJE3</th>
<th>SCME2</th>
<th>SCME1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECAJE2</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>ICTE1</td>
<td>.255</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAE2</td>
<td>.275</td>
<td>.150</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAE1</td>
<td>.387</td>
<td>.211</td>
<td>.553</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICTE2</td>
<td>.291</td>
<td>.713</td>
<td>.171</td>
<td>.241</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICTE3</td>
<td>.303</td>
<td>.741</td>
<td>.178</td>
<td>.250</td>
<td>.846</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICTE4</td>
<td>.258</td>
<td>.631</td>
<td>.152</td>
<td>.213</td>
<td>.721</td>
<td>.749</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAJE1</td>
<td>.463</td>
<td>.280</td>
<td>.303</td>
<td>.425</td>
<td>.320</td>
<td>.333</td>
<td>.284</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAJE3</td>
<td>.489</td>
<td>.296</td>
<td>.320</td>
<td>.449</td>
<td>.338</td>
<td>.351</td>
<td>.300</td>
<td>.538</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCME2</td>
<td>.188</td>
<td>.310</td>
<td>.288</td>
<td>.404</td>
<td>.354</td>
<td>.367</td>
<td>.313</td>
<td>.207</td>
<td>.219</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>SCME1</td>
<td>.182</td>
<td>.299</td>
<td>.278</td>
<td>.390</td>
<td>.341</td>
<td>.355</td>
<td>.302</td>
<td>.200</td>
<td>.211</td>
<td>.701</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Confirmatory factor analysis was used to establish the validity and consistency of the eleven indicator variables in terms of the four theorized latent variables.
Fig. 2. Maximum Likelihood Estimation-based Measurement Model (With 11 indicators)

The maximum likelihood estimations of loadings (using oblique rotation criterion to extract factors with eigen values >=1) and variance extracted are shown in Table 3 and Figure 2. Further, comparing the reliability and quality measures for the constructs and indicator variables with the recommended minimum values, we find that the recommended minimum values are met or exceeded. We therefore conclude that our factors reliably reflect the constructs within the structural equation model.

Table 3. MLE Factor Loadings & the Squared Correlations (N=203)

<table>
<thead>
<tr>
<th>Observed Variables</th>
<th>Latent Variables</th>
<th>ML λ estimates</th>
<th>Squared Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCME1</td>
<td>SCME</td>
<td>.823</td>
<td>0.63</td>
</tr>
<tr>
<td>SCME2</td>
<td>SCME</td>
<td>.852</td>
<td>0.78</td>
</tr>
<tr>
<td>ECAJE1</td>
<td>ECAJE</td>
<td>.714</td>
<td>0.61</td>
</tr>
<tr>
<td>ECAJE2</td>
<td>ECAJE</td>
<td>.649</td>
<td>0.47*</td>
</tr>
<tr>
<td>ECAJE3</td>
<td>ECAJE</td>
<td>.754</td>
<td>0.41</td>
</tr>
<tr>
<td>ITAE1</td>
<td>ITAE</td>
<td>.881</td>
<td>0.56</td>
</tr>
<tr>
<td>ITAE2</td>
<td>ITAE</td>
<td>.627</td>
<td>0.53</td>
</tr>
<tr>
<td>ICTE1</td>
<td>ICTE</td>
<td>.790</td>
<td>0.62*</td>
</tr>
<tr>
<td>ICTE2</td>
<td>ICTE</td>
<td>.902</td>
<td>0.79</td>
</tr>
<tr>
<td>ICTE3</td>
<td>ICTE</td>
<td>.937</td>
<td>0.92</td>
</tr>
<tr>
<td>ICTE4</td>
<td>ICTE</td>
<td>.799</td>
<td>0.63</td>
</tr>
</tbody>
</table>

NOTE: * are computed prior to deletion of these two manifest variables.
Table 3 shows the maximum likelihood estimations of the loadings and the variance extracted from each indicator variable. The measures for global model fit included in Figure 2 suggest that the covariance structure model fits the underlying data quite well. The values for the goodness-of-fit index (GFI), adjusted goodness-of-fit index (AGFI), and Normed fit index (NFI), Comparative Fit Index (CFI) clearly exceed the recommended minimum value of 0.9 [10] [16]. The root mean square residual value of 0.05 is also good. The global fit indexes and the normed Chi-square were greater than 0.9 and less than 5 (in our Model, it is 2.20), respectively. Individual constructs were tested to establish discriminant validity of each dimension as shown in Table 4.

Table 4. Various Discriminant Validity Measurements

<table>
<thead>
<tr>
<th>Dimension/Construct</th>
<th>Cronbach α*</th>
<th>AVE</th>
<th>Composite Reliability (ρ_c)</th>
<th>ECAJE</th>
<th>SCME</th>
<th>ICTE</th>
<th>ITAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECAJE</td>
<td>0.76</td>
<td>0.75</td>
<td>0.86</td>
<td>0.87**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCME</td>
<td>0.82</td>
<td>0.85</td>
<td>0.92</td>
<td>0.37</td>
<td>0.92**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAE</td>
<td>0.75</td>
<td>0.78</td>
<td>0.88</td>
<td>0.71</td>
<td>0.63</td>
<td>0.42</td>
<td>0.88**</td>
</tr>
</tbody>
</table>

* Per [52], alpha should be greater than 0.7.
** The shaded numbers in bold are the square roots of the variance shared between the constructs and their manifest measures. Off diagonal elements are correlations among the constructs as shown in Figure 3. For discriminant validity, diagonal elements in bold should be larger than off-diagonal elements (see [5]). Diagonal elements = square root ($\sum \lambda_i^2$)/($\sum \lambda_i^2 + \sum \theta_j$); Composite Reliability = ($\sum \lambda_i^2$)/($\{\sum \lambda_i^2 + \sum \theta_j\}$). In both the cases, λ_i are the factor loadings and θ_j are unique error variances = 1-λ_i^2.

NOTE: Construct values are standardized and normalized; hence, means and variances are 0 and 1 for all the constructs.

The Cronbach alpha coefficient for each construct, respectively in figure 2 is >0.7 as suggested by [52]. Table 4 lists various measures to identify the discriminant validity of each construct used in the research (figure 2) and the results establish discriminant validity for the constructs used in the model. Table 4 also presents the inter-construct correlations and the composite reliability measures for each construct in the model.

The fit measures were found to be extremely good except for the diagnostic indices for two of the indicator variables (ECAJE2 and ICTE1) that were above five which meant that measurement errors were correlated in some way. These indicator variables are highlighted in Table 3. Consequently, we drop these two indicator variables from the original 11-variable model to construct a refined model with only nine variables. The refined model is shown with its maximum likelihood standardized estimates of inter-construct correlations in figure 3. The nine-indicator variable model in figure 3 has a normalized Chi-square value of 2.76, and its global fit indexes are superior to the earlier model with eleven indicators. The goodness of fit (GFI) index is 0.943 and the comparative fit index is 0.96. The root mean square residual is 0.045 which is also smaller than the original model in figure 2.
Note: Figure depicts the refined measurement model with inter-construct correlations and various fit measures. Manifest variables and related loadings are shown in the Table 9.

Comparison of the two alternative models is shown in the Table 5. As [7] suggests model comparison is easily done by comparing the root mean square residual values of the models. The RMR (root mean square residual) is the square root of the average squared amount by which the sample variance and covariance differ from their estimates obtained under the assumption that your model is correct. It is, in fact, a badness of fit index and, if computed from standardized variables, a value of RMR should not be more than 0.1 [37] where the smaller the RMR the better. An RMR of zero indicates a perfect fit. Therefore, the refined nine-indicator variable model is more valid model for consideration than the original 11-indicator variable model.

Table 5. Comparison of Original Model with the refined Model of Regression

<table>
<thead>
<tr>
<th>Model</th>
<th>Chi Square/df</th>
<th>Normed Chi Square</th>
<th>GFI0F</th>
<th>CFI1F</th>
<th>RMR</th>
<th>RMSEA 2Fat p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2</td>
<td>83.58/38</td>
<td>2.20</td>
<td>0.93</td>
<td>0.96</td>
<td>0.05</td>
<td>0.077 p=0.025</td>
</tr>
<tr>
<td>Original Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>58/21</td>
<td>2.76</td>
<td>0.94</td>
<td>0.96</td>
<td>0.0453F</td>
<td>0.093 p=0.007</td>
</tr>
<tr>
<td>Refined Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the purpose of computing GFI in the case of maximum likelihood estimation, $f(S^{(g)}, S^{(g)})$ is calculated as

$$f(S^{(g)}, S^{(g)}) = \frac{1}{2} \text{tr} \left[K^{(g)} \left(S^{(g)} - \Sigma^{(g)} \right) \right] \text{with}$$

$$K^{(g)} = \Sigma^{(g)} (\hat{Y}_{ML})$$

where \hat{Y}_{ML} is the maximum likelihood estimate of Y. GFI is less
than or equal to 1. A value of 1 indicates a perfect fit.
The comparative fit index (CFI) \cite{17} is given by:

$$CFI = 1 - \frac{\max(\hat{C} - d, 0)}{\max(\hat{C}_b - d_b, 0)} = 1 - \frac{NCP}{NCP_b}$$

where \hat{C}, d, b, and NCP are the discrepancy, the degrees of freedom and the non-centrality parameter estimate for the model being evaluated, and \hat{C}_b, d_b, b and NCP are the discrepancy, the degrees of freedom and the non-centrality parameter estimate for the baseline model. The CFI is identical to the McDonald and Marsh (1990) relative non-centrality index (RNI), except that the CFI is truncated to fall in the range from 0 to 1. CFI values close to 1 indicate a very good fit.

A value of the RMSEA of about .05 or less would indicate a close fit of the model in relation to the degrees of freedom. This figure is based on subjective judgment. It cannot be regarded as infallible or correct, but it is more reasonable than the requirement of exact fit with the RMSEA = 0.0. We are also of the opinion that a value of about 0.08 or less for the RMSEA would indicate a reasonable error of approximation and would not want to employ a model with a RMSEA greater than 0.1.

The RMR (root mean square residual) is the square root of the average squared amount by which the sample variances and co-variances differ from their estimates obtained under the assumption that your model is correct: Following function to compute RMR for each model.

$$RMR = \left(\frac{1}{G} \sum_{g=1}^{G} \sum_{i=1}^{p} \sum_{j=1}^{p} \left(\hat{\rho}_{ij}^{(g)} - \sigma_{ij}^{(g)} \right) / \sum_{g=1}^{G} \sum_{i=1}^{p} p^{*(g)} \right)^{1/2}$$

he smaller the RMR is, the better. An RMR of zero indicates a perfect fit.

Using the path coefficients in Figure 4, we find support for the theoretical variables that lead to E-commerce Audit Judgment Expertise (ECAJE). The research model was supported significantly for H1 (regression path coefficients = 0.43 \(p=0.01\)). This relationship shows that a stronger knowledge/skill level in information and communication technology has a positive relation with ECAJE. The results also provide support for all five corollaries of H1 at highly significant levels, except for H1c (SCME --> ECAJA) that is marginally significant \(p = 0.1\). In perceptual studies where data on both dependent and independent variables are collected from the same subjects, a problem called common method bias \cite{54} may arise. To investigate whether common method bias was a problem in our data set, we used \cite{54} and \cite{41} method in the PLS model to estimate the common method bias. A common method factor (CMF) was included in the PLS model consisting of the entire set of construct indicators. Each indicator’s substantive variances explained by the principal construct and by the CMF were calculated. The results demonstrate that the average substantively explained variance \(R^2\) of the indicators was 0.78 while the average method based variance \(R^2\) was 0.01. The ratio of substantive variance to method variance is approximately 78:1. Even the CMF loadings were very insignificant and of small magnitude. We conclude that the common method bias was not a significant problem in our data set.
The entire path model with ECAJE as the dependent variable explained 59% variance in our model where SCME, ITAE and ICTE are predictors, suggesting a satisfactory outcome for our model in total. Individually, SCME and ITAE as independent variables explained 18% and 43% variance respectively. SCME is a composite of various skills and knowledge sets and the ICTE as a predictor to SCME is one such component. The variance explained by SCME is limited to 18% as it was not within our scope of study to identify other skill sets for SCME and ICTE as outcome and predictor variables. However, ITAE construct’s explanation of 43% variance is meaningful considering ICTE as a predictor variable, since IT audit has a significant relationship with ICTE in E-commerce audit expertise.

5 Summary and Conclusions
This study provides a theoretical model and perceptual evidence of the relationship between various IT expertise indicators and expertise in E-commerce audits. We find strong support for our hypothesized relationships, except for a marginal significance for one of the five corollaries. The findings of this study are supported by the validity of the construct and content. However, we do not make any claim in terms of causality of the relationships. Longitudinal construct measurement might allow for the assessment of the causality of various relationships of the proposed model. In the end, a valid confirmation of the theoretical model should be addressed through model re-estimation on an independent or hold out sample.

The most significant implication of our study to the accounting literature lies in its empirical validation of the E-commerce Audit Judgment Expertise model. The growth of E-commerce technologies in the early 2000’s and the need for specific expertise in auditing such entities has created significant need for auditors to expand their knowledge base. Results of this study provide a clear documentation of the directions for expanding auditors’ E-commerce audit expertise.

A limitation of the study may be its inability to
detect differences between auditors practicing in North-America and other countries. While we find this result to be reassuring in terms of the validity of our overall findings, it may be affected by sample limitations, particularly from auditors practicing in countries located outside North America. Future extensions of the study might be needed to test our findings with larger samples from countries outside North America. This study may be particularly important for certain countries (e.g., China, Japan, the UK) that have significant E-commerce relationships with North-American countries.

Our results have significant implications for education and research. They indicate that auditing courses geared toward educating students in B2B E-commerce audits should include training in information and communication technology, information technology audits, and systems change management. These topics are not typically covered in current auditing text books or introductory audit courses. The same message may be valid for accounting firms seeking to train their auditors for B2B E-commerce audits.

From a research perspective, we see opportunities for model refinement and empirical investigation. First, our generic model focuses on expertise components at a broad level. We have provided only a few indicator variables for each of the latent variables in the model. More detailed indicator variables can be identified and investigated in future research to provide more detailed guidance on the specific indicators of expertise in E-commerce audits.

Finally, as a survey-based perceptual investigation, our study is a snapshot of the proposed model, which means it is in need of further confirmation. For example, future research might use experimental methodology to investigate the effects of various indicator variables on expertise in making specific audit judgments in E-commerce. Such a study might require development of realistic case studies for use in a laboratory setting with measured indicator variables. Qualitative case studies are needed in various E-commerce contexts to assess the validity of this model. Of particular interest in assessing this model would be the audit expertise needed to function in audit teams. With the shared responsibilities of team based audits the required skills sets for each audit may be different from those recommended in this paper.

Acknowledgements
We are thankful to Ron Weber (Monash), Arnie Wright (Boston), Raj Srivastava (Kansas), Steve Sutton (Central Florida), Stewart Leach (Melbourne), Karim Jamal (Alberta), Vairam Arunachalam (Missouri), Rammya Krishnan (Carnegie Mellon), Larry Gordon (Maryland), Marty Loeb (Maryland), Dan Dhalwal (Arizona) and Vladimir Zwass (FDU), Roger Debreceny (Hawaii), Jim Hunton (Bentley) for helpful comments on earlier drafts of this paper. The participants at the 2007 AAA annual, 2008 Mid-Year AAA (IS section) and 6th World Congress at Istanbul also contributed to the refinement of this paper. Special thanks to Tom Lamm (ISACA), Barry Melancon, (AICPA), Charles LeGrand, (IIA), Dan Swanson, (IIA), Les Smith (ICAEW), Benjamin Lau (ICAA), David Smith, (CICA), and Ron Salole (CICA) for extending support in various capacities. We also thank senior partners & directors Sri Ramamoorti (Grant Thornton, USA), Toni Panicea (PWC, Canada), Pat Goggins (KPMG Canada), and Jim Pryce (Deloitte Canada) for extensive support of the study. Finally, the first author gratefully acknowledges financial support from University of Windsor under its USSHRC and “RTIF” research grants.

References
[34] J. E. Hunton, A. M. Wright and S. Wright, “Are financial auditors overconfident in their ability to assess risks associated with

Dr. Jagdish PATHAK is Associate Professor of Accounting & Systems at the Odette School of Business Administration, University of Windsor, Ontario, Canada and the lead author of this research project. He has a PhD in Management Studies majoring in accounting and MIS from the University of Goa. He is an award winning author in his domain of research publishing in scholarly and professional journals internationally. His papers have appeared in the Journal of Accounting and Public Policy (Elsevier), International Journal of Auditing (Wiley), Information Systems Management (Taylor & Francis), Managerial Auditing Journal (Emerald) and several other. Dr. Pathak is Editor (North America) of the Managerial Auditing Journal and Associate Editor (Accountancy) of the International Journal of Applied Decision Science (Inderscience). He has published two research monographs from Allied (New Delhi) and Springer Verlag (Berlin) on the information technology auditing. His current research interests are in the areas of technology assurance, enterprise systems impact on firms’ performance, international corporate governance, investor protection, and investor behaviour with respect to internet-based financial disclosures. He is an active member and nominated executive of strategic and emerging technology and the information systems sections of the American Accounting Association. He can be contacted at jagdish@uwindsor.ca.

Mary LIND has a Ph.D. in Business Administration from the University of North Carolina at Chapel Hill. Her current research interests are in the areas of innovation, computer mediated communication channels, virtual teams, and the impact of technology on firm performance and service quality. She has published in Organization Science, Management Science, Information Systems Research, Information and Management, IEEE Transactions in Engineering Management, Work Study, International Journal of Quality & Reliability Management, and the European Journal of Information Systems. She is a member of AIS, DSI, Academy of Management, and the ACM and has over 23 years of experience in
college teaching in both face to face and in online environments. Prior to attaining the terminal degree she was employed in industry for 10 years in systems development. She is a member of the editorial review board for the *International Journal of Applied Decision Sciences*.

Dr. *Mohammad J. ABDOLMOHAMMADI*, CPA is the John Rhodes Professor of Accounting at Bentley University in Waltham, Massachusetts, U.S.A. His work on external and internal auditing has appeared in many journals, including *The Accounting Review, Auditing: a Journal of Practice and Theory, Contemporary Accounting Research, Journal of Business Ethics, International Journal of Accounting* and *International Journal of Auditing*. His research interests include behavioral auditing, acquisition of expertise and ethics.*