
Informatica Economică vol. 13, no. 2/2009 
 

95 

About Parallel Programming: Paradigms, Parallel Execution  
and Collaborative Systems 

 
Loredana MOCEAN, Monica CIACA 

Business Information Systems Department,  
Babeş-Bolyai University of Cluj-Napoca, Romania 
{loredana.mocean|monica.ciaca}@econ.ubbcluj.ro  

 
In the last years, there were made efforts for delineation of a stabile and unitary frame, where 
the problems of logical parallel processing must find solutions at least at the level of impera-
tive languages. The results obtained by now are not at the level of the made efforts. This pa-
per wants to be a little contribution at these efforts. We propose a overview in parallel pro-
gramming, parallel execution and collaborative systems. 
Keywords: Parallel Programming, Parallel Execution, Collaborative systems, Collaborative 
parallel execution  
 

Introduction  
The need of influence on a large scale from 

sequential programming to simultaneous 
processing takes at least the following basic mo-
tivations: 
• Natural barrier dictated by the speed of electric 
current, that, irrespective of future performance 
of  one processor, makes impossible the unli-
mited increase of  uni-processor system capacity 
and efficiency performing. 
• Inherent kind and strong parallel of many algo-
rithms; this kind of algorithm suggest the design-
ing of a program by initiation of multiple 
processes, which co-operate to fulfill a common 
purpose.  
Investigations about methods through which in-
formatics community can make this forced pass-
ing started during the seventh decade ([1], [20], 
[18]). Unlike of the other problems which found 
a much quicker solution, parallel programming 
didn’t succeed yet to be imposed as general way 
of designing, implementation and performing of 
algorithms. Problems with a new approach 
proved extremely difficult to be solved, so at the 
level of theoretic substantiation and especially at 
the level of conceptions of the programmers 
community. Learning and profound study by the 
mass of informatics community of an inherent 
sequential algorithmic approach used at the level 
of imperative programming languages(actually 
welled from the inherent sequential kind of our 
every day actions) it makes that this forced tran-
sition  to become extremely complicated.  
 
1.1 Purpose of the study 
Parallel algorithms and collaborative systems are 
two concepts which exist also in theory and prac-

tice of global marketplace but currently, there is 
no effective approach to find the link between 
collaborative systems and data parallelism and 
algorithms. 
The purpose of this study is to develop concepts 
to describe, conceptualize and analyze the syner-
getic aspects between parallelism and collabora-
tive systems, from the point of view of the re-
searcher, the programmer and the user.  In this 
study, existing concepts and theoretical models 
describing parallelism are explored and brought 
into the specific context of collaborative systems 
and its software components. The research in-
cludes preliminary theory about parallelism. The 
theory building in this study is about using the 
existing conceptualizations and theoretical mod-
els, and on the basis of these, compiling a con-
ceptualization that is applicable in the specific re-
search branch. The purpose of this study is also 
helpful for the businesses and software compa-
nies that desire to implement or upgrade their 
business information systems ERP basis systems, 
enhance competitive capacity and actively dis-
pose global strategy, especially in the current 
trend of the postal communication, collaboration, 
coordination and communication. 
 
1.2  Materials and Methods 
In our research we followed some important lines 
about: 
• Appreciation and understanding of the reader; 
• Scope of our research; 
• Lack of methodology; 
• The existing literature and critical thinking 
about the written articles and books in this do-
main; 
• Useful aspects after the paper is ready; 

1 



Informatica Economică vol. 13, no. 2/2009 
 

96 

• Advantages and the possibility of continuing 
the research in this field of activity 
• First of all we studied the theoretical concepts 
about parallel programming and collaborative 
systems. We studied these concepts  from many 
books and we took part at many presentations, 
PhD Thesis and Workshops on this research 
branch; 
• In our research we also used published studies 
on the Internet and extensive websites; 
• The synergetic aspects between data paral-
lelism, data programming and collaborative sys-
tems  were hard to study; 
• The documentation base is being provided by 
multiple sources, one of them being the free ar-

ticles and academic magazines offered by libra-
ries and on-line databases. 
  
1.3 Results 
In a logical way there are two practical possibili-
ties of passing from sequential programming to 
the parallel one: 
1. projecting algorithms that are create from the 
beginning in parallel approach  and then to im-
plement it at the level of some programming lan-
guages especially projected for this kind of per-
forming; 
2. elaborating specialized software for automat-
ic transform of sequential programs in efficient 
parallel versions of them (see figure 1). 

 
Fig. 1. Possibilities of passing from sequential programming to the parallel one 

 
Even if we think that the future will impose final-
ly, because of necessity, the first variant  it is no-
ticed that for the actual period only the level of 
technological development  of hard equipments 
could  contribute of  quick finalize of this type of 
transition (even if there are no architectural stan-
dards for parallel computers). Unfortunately  in-
genious and especially correct administration of 
the resources involved at the level of an algo-
rithm prove to be quite difficult when it is desira-
ble parallel approach of algorithm elaboration 
and that’s way it remains more a research domain 
than a practical methodology well edit and uni-
versal accepted. For this reasons the largest part 
of the actual research is oriented on the parallel 
processing and it is directed on the development 
and analyze of some theoretic methods that allow 
substantiation of some general constructive prin-
ciples as well as efficient implementation of 
some reorganized compilers (translators that 
reorganize a sequential program for parallel ex-
ecution). We consider that for the actual stage 
this approach is the most suitable. It comes to 
support the ones that already have impressive soft 

resources which is implementation it becomes in-
efficient with the increasing of the problems 
complexity that must be solved. On the other 
hand is very important the psychological aspect 
of the contact of the programmers with already 
“parallel programs” that perform efficient. The 
study and the successfully use of this programs 
will bring in an objective way acquiring the ne-
cessary experience and interest growing of the 
programmers for directly parallel approach in 
projecting their application. Even if  in the first 
phase this practice will be adopted (and already 
is!) only for the advanced and special educated  
part of the programmers  in this purpose, devel-
oping algorithms in parallel approach that will 
remain for sure in time the unique methodology 
of program that could justify and  realize the ad-
vance of software informatics. For the actual 
step, in the favor of developing of some paralle-
lizing translators, it comes the argument that 
usually this realizes the extraction of maximum 
possible parallelism having as simultaneous ob-
jects also the generating and optimizing in paral-
lel code. That’s why that can be used inclusive 



Informatica Economică vol. 13, no. 2/2009 
 

97 

for optimizing of some parallel source programs, 
developed from it’s very beginning  like this for 
the programmers, but whom it might miss the op-
timum performing characteristic.  
 
2 Parallel programming paradigms  
The analyze of parallel processing possibilities it 
leads on identifying some programming para-
digms well outlined expressing the essence of 
classifying criterions of the languages that inte-
grates this kind of facilities. 
For the execution of a program at the level that it 
is desirable the parallel processing, the program-

ming language it must offer ways for (see also 
figure 2): 
1. identifying the parallelism that is materia-
lized by decisions related to the components of 
the program that will be (potential) performed by 
different processors; 
2. initiating and finalizing the parallel 
processes; 
3. coordinating parallel execution by specifying 
and implementing the ways of interaction be-
tween the components of the program planned to 
execute in parallel. 

 
Fig. 2. Steps in parallel processing 

 
It is obvious that these facilities might be thought 
and implemented at the level of some program-
ming language or in an explicit way or in an im-
plicit one creating two types of parallelism: ex-
plicit parallelism and implicit parallelism. 
Explicit parallelism is characterized by the pres-
ence of some explicit syntactic constructions in 
the programming languages we are talking about, 
having the mission to describe until a certain lev-
el of detailing, the modality in which will take 
place the parallel perform.  
For this meaning we can identify in time different 
approach mechanisms of explicit parallel perform 
and we can remember here the primitives like 
fork-join, traffic lights, parabegin-parend me-
chanism and so on.  
Even if this promote a high level of flexibility(in 
the meaning that exists the possibility of describ-
ing of any parallelism form based on this primi-
tives) they have the disadvantage of let in pro-
grammer’s task the majority of the decisions 
connected with the identifying and concrete ex-
pression of parallelism at the level of a program. 
That’s why, in time had been proposed diverse 
sophisticate approaches, trying to promote some 
facilities with a higher level of abstraction and 
though to prove that are useful in a practical way 
at the programmer’s level. This proposals began 
from developing some specialized libraries in 

primitives of communication with the role of di-
minish the complexity of parallelism administra-
tion (PVM [21] and Linda[11]) until to the de-
velopment  of some special languages in this 
meaning, like PCN language[10]. 
Implicit parallelism allow the programmers writ-
ing some source code without their implication in 
the decisions connected with parallelism exploi-
tation  at the level of the program. This is auto-
matic perform by the compiler or by the execu-
tion environment  leading at obtaining some 
transparency of parallelism manifestation con-
fronted by the programmer and succeeding  to 
maintain like this the complexity of developing 
parallel programs at an identical level with the 
one of developing purely sequential programs. 
Implicit extraction of parallelism, even is the 
most comfortable choice for the programmer, 
isn’t at all an easy task to accomplish. According 
to what we show in previous section, in the case 
of imperative languages of programming, the 
complexity of the problem is nearly prohibitive, 
allowing to obtain acceptable results only for a 
limited class of applications (the ones that use in-
tensely repetitive operations over the key-
board/control panel – so using cycles with known 
number of steps)[24]. 
Fortunately, the situation is different in the case 
of declarative programming languages. Function-



Informatica Economică vol. 13, no. 2/2009 
 

98 

al and logical programming languages are cha-
racterized with a higher level of abstraction, al-
lowing to the programmer to focus on the de-
scription of problem’s requirements and not on 
relative details about the way its solution must be 
obtained. In this meaning the declarative lan-
guages (even if they appeared later in the pro-
gramming languages spectrum and maybe that’s 
why insufficient exploited until now from the 
point of view of their algorithmic potential) had 
opened new perspectives concerning the possibil-
ity of automatic exploit of parallelism. 
The higher level of abstraction of these languag-
es, as well as their strongly mathematic nature 
becomes strong advantages in offering the possi-
bility of an automatic exploitation of parallelism. 
In private, declarative programming languages 
are characterized by:  
• referential transparency, this meaning that the 

variables are looked as mathematics entities 
whom value won’t modify during the perform-
ing(that’s why declarative languages are cha-
racterized as programming languages that adopt 
the single assignment rule-single assignment 
languages); 

• their operational semantic is based on a certain 
form of indeterminism (the selection of clauses 
in logical programming languages and respec-
tively operators like apply in the case of func-
tional languages); 

• the possibility of using some immediate evalua-
tion schemes(eager evaluation schemes)that al-
low to obtain  dataflow-like computations ex-
tremely proper to a parallel performing. 

These three reasons are the main causes of the 
conclusion that declarative programming lan-
guages show a implicit parallelism a lot more 
higher than imperative programming languages. 
Despite of these theoretic advantages, the so-
called performing can be inefficient because of 
the fallowing potential disadvantages: 
• in a declarative system misses the information 
about the dimension of participants components 
in a computational process. So, like this you can 
decide the parallel execution of some compo-
nents for that (because of too fine granulation of 
the tasks) the control of parallel execution is 
more expensive than the potential benefits of 
speed that parallel execution could bring; 
• if in those particular cases we do not apply 
complete analysis techniques of the existing de-
pendences between the components (as we have 
seen in the previous section we cannot obtain in 
the general case, the problem being the complete 
NP) than the system can try to make a code se-

quence parallel even though that sequence is 
seemingly already parallel, decision that brings 
inefficiency because of the need to synchroniza-
tion and communication between processes. 
An ideal parallel execution system should allow 
the automatic extraction of a very high degree of 
parallelism (request that is compatible with the 
basic operational principles of declarative pro-
gramming) without restricting the possibility for 
the programmer to intervene if a certain situation 
demands it (this last request does not comply 
with the semantic requests of most declarative 
programming). 
Only a few declarative paradigms [23] seem to 
offer the availability and flexibility needed for an 
immanent parallel execution: the pure objectual 
programming ([22],[23]) some forms of func-
tional programming [16] and logical program-
ming [13]. Among these, logical programming 
establishes itself as the most adequate for obtain-
ing an ideal parallel behavior. 
 
3 Parallel execution in logical programming 
languages 
Logical programming offers clear opportunities 
for the implicit exploitation of parallelism. This 
becomes obvious if we analyze its operational 
semantic. The resolution algorithm displays dif-
ferent degrees of indetermination, identifying 
many moments of the execution in which differ-
ent alternatives for the continuation of the deduc-
tive computational process are possible. In a se-
quential implementation these decisions are serie-
lized, being explored through an order that de-
pends on the definition of the selection opera-
tions. Parallel execution uses the possibility to 
explore these alternatives concomitantly, without 
affecting the programs semantic. 
Moreover, logical programming allows different 
natural ways for the programmer to explicitly in-
tervene by introducing different annotations in 
the source code, annotations that keep the struc-
ture and the semantic of the program. 
The parallelism forms that can be identified in 
the logical programs depend on the selection op-
erations that are decided to be possible to be ex-
ecuted simultaneously. Thus, in logical pro-
gramming there are to parallelism forms that can 
be identified [8]: 
1. OR parallelism – this parallelism appears 
when we simultaneously execute the stipulations 
that can be used as alternatives for solving the se-
lected purpose. Each (sub) purpose can be solved 
using more stipulations (precisely using any 
clause whose heading can be united with the re-



Informatica Economică vol. 13, no. 2/2009 
 

99 

spective purpose). 
2.   AND parallelism – another vision of the 
previous mentioned parallelism can be obtained 
through the consideration of the indetermination 
that is present in the sub purpose selection of a 
stipulation. In certain conditions, it is possible to 
try satisfying a stipulation through the concurring 
resolution of its constituent sub purposes. 
Different possible parallelism forms have been 
identified, an example being the unifying paral-
lelism, but because of its sensible granulation, the 
efficiency of this parallelism is conditioned by 
the implementation in a specialized architecture. 
A more thorough discussion of the aspects in-
volved in this type of parallelism can be found in 
[3]. 
Regardless of the positive aspect that have been 
mentioned until now relating  to the considerable 
potential of the logical programming languages 
to take on the parallel execution we have to rec-
ognize that there are many aspects still to be con-
sidered in this matter. Next, we will enumerate 
these aspects followed-up by a short cause of the 
persistent problems. 
 
4 Efficiency 
Even though the specialized literature has many 
propositions for exploiting parallelism in a logi-
cal program, very few of these propositions have 
proven themselves to be of practical use. The 
main factor for this is that in reality the main 
concern is efficiency that is understood in the log-
ical programming languages as: 
I. The ability to minimize the costs for the paral-

lelization overhead up to a level where the 
cost becomes insignificant compared to the 
profits that are brought through the parallel 
execution. 

II. If we are talking about a forced sequential ex-
ecution of a parallel version that is caused by 
lack of resources then we should obtain effi-
ciency comparable with the best implementa-
tion known for the sequential version. 

The main request for a parallel implementation is 
that the parallel execution shouldn't be any slow-
er than the corresponding sequential version. In 
real life this request is hard to obtain for the gen-
eral case because the exploitation overhead for 
parallelism can make certain operations to be 
more expensive (slower) than the sequential case 
(backtracking is a common example). Planning 
efficient logical parallel programming systems is 
a complex problem that continues to remain an 
unsolved issue. 
 

5 Multi-paradigm systems, Lack of optimiza-
tion and Integration with other models 
There are efficient implementations that only ex-
ploit one form of parallelism [13], but systems 
that want to exploit more than one form have cer-
tain disadvantages, such as: 
• They count on implementation schemes that 
lead to sequential efficiency loss ([15], [4], [3]) 
leading to inefficient implementations; 
• They limit the amount of potential parallelism 
to be exploited; 
• They change the language semantics to obtain 
an easier exploitation of parallelism ([9], [22]). 
Even the models that are based on standard se-
quential implementation (like WAM- Warren 
Abstract Machine)[Warr83] can display a higher 
degree of inefficiency due to the promotion of 
parallel execution. On the other hand, the advan-
tages of parallel execution are often planned for 
the most disadvantageous cases, cases that rarely 
appear in real life programming. The weak per-
formance of many implementations comes from 
not including some optimization functions that 
adjust the parallelism exploitation cost to the 
complexity of every particular case. 
Logical programming has evolved a lot in the last 
years bringing up new models, capable to give 
solutions more efficiently to different type of 
problems that appear in parallel implementation. 
Thus, considering constraint handling and data 
parallelism represent only two examples of mod-
els that can be integrated in between other paral-
lel implementations of logical programming lan-
guages. 
 
6 Data parallelism and collaborative systems 
Data parallelism (also known as loop-level paral-
lelism) is a form of parallelization of computing 
across multiple processors in parallel computing 
environments. Data parallelism focuses on distri-
buting the data across different parallel compu-
ting nodes. It contrasts to task parallelism as 
another form of parallelism [28]. 
During the last decade, all the database systems 
included in their components parallel processing 
functions. The evolution was generated by the 
growing in a considerable rhythm of the database 
dimensions. The rhythm of growing of the data-
base dimensions surpass the growing in speed of 
the processors, in capacity of the memories, so 
that are necessary supplementary actions in order 
to outface to the happened effects behind the fast 
growing of the data volume.  
The parallelism help to the constant multiplica-
tion of the data even if is considerable enlarged 

http://en.wikipedia.org/wiki/Central_processing_unit�
http://en.wikipedia.org/wiki/Parallel_computing�
http://en.wikipedia.org/wiki/Task_parallelism�


Informatica Economică vol. 13, no. 2/2009 
 

100 

the dimension of database.  
This effect is important in loading data, index 
creating, administration operations and applica-
tions which use grand lots of data. 

In the perspective of applications of data paral-
lelism, the principal’s uses of data parallelism are 
shown in the next figure. 

 
Fig. 3. The uses of data parallelism 

 
The combining of computer networks and paral-
lel algorithms had inspired a new class of appli-
cations which support the collaborative activities. 
In a collaborative application participants are 
hired in a series of transactions for achieve a 
common scope. The collaboration brings new re-
quests in computational parallel services.  
The most important is the communication be-
tween the computers and then the distribution of 
information which must permit identifying the 
person and the location, hard resources, commu-
nication protocol, validation of communication 
and collaboration between user’s applications. 
When we think to a collaborative system based 
on parallel data and applications, we must think 
to the following: 
• The organizing of parallel services 
• The management of parallel information 
• The group parallel communication 
• The parallel management of the team 
• The parallel management of the process 
• The parallel management of information. 
The parallel services may be dived into multiple 
tiers, as we see in figure 4. We can work with the 
help of multiple layers in which parallel work is 
the central point of the system. The parallel ap-
plications which works with such a system allow 

members of the group to work in a collaborative 
manner and the final information will be a data 
combination between all the groups of the sys-
tem. Collaborative technologies allow members 
to communicate and collaborate as they cope 
with the opportunities and challenges of cross-
boundary work. Collaborative technologies can 
serve to enhance the efficiency and effectiveness 
of organizational work processes and decision 
making [29]. When we think to a parallel colla-
borative system there are important two dimen-
sions: 
• The place where are located team members. 
• The time when the team members work. 
Data parallelism can be implemented into follow-
ing technologies. 
a. Messaging applications. The parallelism can 
be implemented in all the level of messaging: 
Intranet, Internet and E-mail.  
b. Conferencing Applications. The parallelism 
can be implemented in all the level of these tech-
nologies including video-conferencing, audio-
conferencing, web conferencing. 
c. Team Collaborative Applications is also a 
branch which can parallelize applications in elec-
tronic group calendars, project management sys-
tems, etc. 



Informatica Economică vol. 13, no. 2/2009 
 

101 

 
Fig. 4. Parallel services in a collaborative parallel system 

 
In the collaborative systems, we can successful 
use multidimensional data systems. They are the 
most intuitive, feeble but most expensive tools 
for analytical processing [33]. 
 
7 Conclusions 
This paper wants to be an overview in parallel 
programming and the link with collaborative sys-
tems. The parallelism is divided into two large 
categories: implicit parallelism and explicit one. 
Logical programming offers clear opportunities 
for the implicit exploitation of parallelism.  
Process parallelism may be important in many 
applications of computer science, but because of 
the ubiquitous ness of arrays in such applications, 
data parallelism is likely to be useful in most and 
critical in many. 
It is great for programmers but much harder to 
implement. To achieve the parallel collaboration 
between the systems and their users, in order to 
obtain the needed information to solve the prob-
lems of the users, it is useful to use some parallel 
algorithms based technologies, referring not only 
to individual intelligent systems but to many in-
telligent systems that are working together, colla-
borating. The parallel collaboration supports 
large scale design, improves the speed and at the 
same time improves the computing resource uti-
lization of collaborative design. A collaborative 
parallel design prototype system can be devel-
oped to realize parallel assembly, parallel colla-

boration and parallel integration for virtual local 
and global organizations. 
 
References 
[1] F. E. Allen, “Program optimization”, in Annual 
Review in Automatic Programming 5, International 
Tracts in Computer Science and Technology and their 
Applications, vol.13, Pergamon Press, Oxford, Eng-
land, pp.239-307, 1969. 
[2] R. Bahgat, Pandora: Non-Deterministic Parallel 
Logic Programming, PhD Thesis, Department of 
Computing, Imperial College of Science and Technol-
ogy, Feb. 1991, World Scientific Publishing Co. 1993. 
[3] J. Barklund, Parallel Unification, PhD Thesis, 
Uppsala University, 1990. 
[4] U. Baron, J.C. de Kergommeaux et al., “The Paral-
lel ECRC Prolog System PEPSys: An Overview and 
Evaluation of Results”, in Proceedings of the Interna-
tional Conference on Fifth GenerationComputer Sys-
tems, Tokyo, 1988, pp. 841-850. 
[5] P. Borgwardt, “Parallel Prolog using Stack Seg-
ments on Shared Memory Multiprocessors”, Proceed-
ings of the 1984 International Symposium on Logic 
Programming, Atlantic City, NJ, 1984, pp 2-11. 
[6] A. Ciepielewski and S. Haridi, A Formal Model 
for Or-Parallel Execution of Logic Programs,  IFIP 
83, North Holland, P.C. Mason (ed.), pp.299-305, 
1983. 
[7] J.S. Conery, The AND/OR Process model for pa-
rallel Interpretation of logic Programs, PhD. Disserta-
tion, Univ. California, Irvine, 1983. 
[8] J.S. Conery , Parallel Execution of Logic Pro-
grams,  Kluwer, Dordrecht, 1987. 
[9] V. Santos Costa, D. Warren and R. Yang, “Andor-



Informatica Economică vol. 13, no. 2/2009 
 

102 

ra-I: A parallel Prolog system that transparently ex-
ploits both and- and or-parallelism”, in Proceedings of 
the Third ACM SIGPLAN Symposium on Principles 
and Practice od Parallel Programming, ACM Press, 
April 1991, pp. 83-93. 
[10] I. Foster and S. Tuecke, Parallel Programming 
with PCN. Argonne National Laboratory, January 
1993. 
[11] D. Gelernter, Generative communication in Lin-
da. ACM Transactions on Programming Language 
Systems, 7(1), 1985, pp.80-112. 
[12] G. Gupta, M. Hermenegildo and V. Santos Costa, 
“And-Or Parallel Prolog: A RecomputationBased Ap-
proach”, New Generation Computing, 11 (3-4) 
pp.297-323, 1993. 
[13] G. Gupta, Multiprocessor Execution of Logic 
Porgrams, Kluwer Academic Publishers, Norwell, 
1994. 
[14] Z. Halim, “A data-driven machine for OR-
parallel evaluation of logic programs”, in New Gener-
ation Comput. , pp.5-33, 1986. 
[15] L. V. Kale, “Parallel Execution of Logic Pro-
grams: the REDUCE-OR Process Model”, in Fourth 
International Conference on Logic Programming, 
pages 616-632. Melbourne, Australia, May 1987. 
[16] P.H.J. Kelly - Functional Programming for 
Loosely-coupled Multiprocessors  MIT Press, 1989. 
[17] R.M. Karp, R.E.Miller and S. Winograd, “The 
organization of computations for uniform recurrence 
equations”, in Journal of the ACM, 14(3), pp.563-590, 
July 1967. 
[18] L. Lamport, ”The parallel execution of DO 
loops,” in Communications of the ACM, 17(2), 1974, 
pp. 83-93. 
[19] G. Lindstrom, “OR-parallelism on applicative ar-
chitecture,” in Proceedings of  2-nd International Log-
ic Programming Conf, pp.159-170, July 1984. 
[20] Y. Muraoka, Parallelism exposure and exploita-
tion in programs, Ph.D. thesis, Tech.Rep. 71-424, 
University of Illinois at Urbana-Champaign, 1971. 
[21] V. S. Sunderam, “PVM: a framework for parallel 
distributed computing”, in Concurrency: Practice & 

Experience, 2(4), 1990, pp.315-339. 
[22] S. Janson and S. Haridi - Programming Para-
digms of the Andorra Kernel Language, Technical 
Report PEPMA Project, Sweden, November 1990.  
[23] P. C. Treleaven, Parallel Computers: Object-
oriented, Functional, Logic. J. Wiley & Sons, 1990. 
[24] A. Vancea, Paralelizarea automată a programe-
lor, Teză de doctorat, Universitatea "Babeş-Bolyai" 
Cluj-Napoca, 1999. 
[25] M. (Ciaca) Vancea, A. Vancea, An Analysis of 
Models for Parallel Logic Programming, in Research 
Seminars, Preprint No. 1, 2001, pp. 21-32. 
[26] M. Vancea, Tehnici de implementare în limbaje 
de programare logică paralelă, Presa Universitară 
Clujeană, 2004 
[27] D. H. D. Warren, An Abstract Prolog Instruction 
Set. Technical Report 309, Artificial Intelligence Cen-
ter, SRI International, 1983. 
[28] http://en.wikipedia.org/wiki/Data_parallelism 
[29] A. P. Massey, Collaborative Technologies 
[30] P. Brezillon, F. ADAM and J.C. Pomerol, “Sup-
porting complex decision making processes in organi-
zations with collaborative applications - A case 
study”, In Favela J. and Decouchant D. (Eds.) Group-
ware: Design, Implementation, and Use, LNCS 2806, 
Springer Verlag, 2003, pp. 261-276.  
[31] P. Brezillon and P. Zarate, “Group Decision 
Making: A Context oriented view”, in Proceedings of 
tenth International Conference IFIP8/WG8.3, Mere-
dith R., Shanks G., Arnott D., Carlsson S. (Eds), Pra-
to, Italie, ISBN 0 7326 2269, 1-3 Juillet, 2004, pp. 
123-133.  
[32] S. Smollar and R. Sprague, “Communication and 
Understanding for Decision Support”, Proceedings of 
the International Conference IFIP TC8/WG8.3, Cork, 
Ireland, 2002, pp. 107-119.  
[33] D.A. Sitar – Tăut, Baze de date distribuite, Ed. 
Risoprint, Cluj – Napoca, 2005 
[34] T. Connoly, C. Begg and A. Strachan, Baze de 
date. Proiectare. Implementare. Gestionare. 
Bucuresti: Editura Teora, 2001. 

 
Loredana MOCEAN has graduated Babes-Bolyai University of Cluj-Napoca, the 
Faculty of Computer Science in 1993, she holds a PhD diploma in Economics from 
2003 and she had gone through didactic position of assistant and lecturer, since 2000 
when she joined the staff of the Babes- Bolyai University of Cluj-Napoca, Faculty 
of Economics and Business Administration.  She is the author of more than 10 
books and over 35 journal articles in the field of Databases, Data mining, Web Ser-
vices, Web Ontology, ERP Systems and much more. 
Monica CIACA has graduated Babes-Bolyai University of Cluj-Napoca, the Facul-
ty of Computer Science in 1993, she holds a PhD diploma in Mathematics from 
2002 and she had gone through didactic position of assistant, lecturer and associate 
professor, since 1994 when she joined the staff of the Babes-Bolyai University of 
Cluj-Napoca, Faculty of Economics and Business Administration. She is the author 
of more than 10 books and over 45 journal articles in the field of Databases, Soft-
ware Engineering, Artificial Intelligence and Distributed Databases. 

 


