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This paper deals with forecasting demand of potential factors in data centers. Firstly it will 
define factors themselves and their importance in the process of data centers. Then it will be 
shown how three standard forecasting methods can be applied for predicting capacity needs 
in data centers. 
Keywords: data center, forecast, capacity planning. 
 

Motivation 
Nowadays, data centers are being run in-

cident-driven. Quite often further hardware 
systems are installed as a reaction on new 
customer needs. Despite acquisition costs for 
further hardware systems being considered 
uncritical, the extension of the information 
infrastructure leads to higher administration, 
maintenance, and finally personnel costs. 
For an efficient usage of the existing infor-
mation infrastructure, there are concepts such 
as Virtual and Adaptive Computing to logi-
cally separate hard and software. Realizing 
these concepts allows abandoning incident-
driven business structures. Therefore, the 
adaption of suitable processes of operative 
production planning and control seems to be 
most useful.   
The planning of utilization comes along with 
capacity and time management. Fundament 
for the capacity and time management is the 
production planning, which can be conducted 
with optimization models and forecasting 
processes. 
Factors of a data center are identified in the 
following chapter. Next, forecasting 
processes of production program planning 
are applied in order to determine the amount 
of necessary potential factors. 
 
2. Factors 
The data center as a production system pro-
duces IT-services as output, which are made 
available to the customers as IT-products 
[18]. Such a production system can be de-
scribed by its productions factors. Factors 
which fulfill planning, controlling, and orga-
nizational activities are labeled as managerial 

factors. They control the combination of all 
production factors. 
Production factors are divided into raw mate-
rials and supplies and potential factors. Raw 
materials and supplies are consumed during 
the production process by becoming part of 
the output or because it is their elimination 
which enables the production in the first 
place. The capacities of potential factors are 
put at the production process’ disposal with-
out any loss of their productive effectiveness 
[19]. 
Personnel, application systems, and funda-
mental systems are major parts of the infor-
mation infrastructure in data centers [12]. 
Application systems, fundamental systems, 
as well as the personnel charged with operat-
ing the data center can be considered poten-
tial factors. Potential factors can be non-
physical and physical. Application software 
and fundamental systems such as develop-
ment environment, data base systems, or op-
erational systems are non-physical potential 
factors. Hardware as a fundamental system 
and the personnel, which is charged with op-
erating the infrastructure, is physical poten-
tial factors. The maximum output of a poten-
tial factor is described as capacity [5]. 
When describing computer systems as hard-
ware units, they can be considered as a set 
consisting of processor, storage and in-
put/output devices. Input/output devices are 
used for the communication with the com-
puter system. The processor retrieves instruc-
tions from the storage, decodes these instruc-
tions, and finally executes them.  
The hardware component storage is divided 
into primary and secondary storage. Primary 
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storage holds the data during the immediate 
operation of application and fundamental 
systems [15]. 
Secondary storage is non-volatile storage, 
usually disk storage. The capacity of the sec-
ondary storage normally exceeds the primary 
storage several times [13]. 
Every hardware component has a capacity 
that is describable by a suitable measure. A 
measure to explain the processors capacity is 
the maximum number of operations per 
second that the processor can execute [8]. 
The evaluation of capacity is conducted in 
millions of instructions per second (MIPS). 
The communication of input/output devices 
takes place via channels. A channel is the 
connection between the sender of informa-
tion and the receiver. The transfer speed is 
determined through bandwidth [6], which is 
given in bits/s [6]. 
The storage capacity determines how many 
storage cells, which can store binary digits, 
there are on a medium. The capacity evalua-
tion is conducted in bit or byte [14]. The 
communication with external storage systems 
takes place via input/output devices. Channel 
bandwidth needs recognition along with sto-
rage capacity.  
The development of the hardware component 
capacity can be described through Moore’s 
Law, which explains that the number of tran-
sistors in an integrated circuit doubles ap-
proximately every 18 months [15]. The 
hardware components’ capacity C grows ex-
ponentially depending on time t. The factor 
C0 describes the initial capacity. The expo-
nent λ is the growth rate. 

( ) teCtC ⋅⋅= λ
0     (2.1) 

The following is valid for the n-
multiplication of capacity within the time Tn : 
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The growth rate for doubling the capacity 
every 1.5 periods is: 
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If all q hardware units of the earliest genera-
tion were substituted by q recent hardware 
units in this model, then the overall capacity 
of the hardware components in the data cen-
ter increases: the data center’s overall capaci-
ty CHardware in the moment t is the sum of to-
tal capacities of each hardware generation in 
the data center. From formula (2.1) follows:      
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A data center consists of n generations with q 
hardware units. The capacity of the earliest 
hardware generation C0

+ is described by for-
mula 2.5: 
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The resulting capacity for the data center 
(2.4) is: 
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This is a geometric series and thus, can be 
transformed: 
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Hence, the overall capacity of the data cen-
ter’s hardware components grows exponen-
tially as well, yet it grows slower than the 
capacity of hardware components in average. 
This effect is due to the usage of hardware 
components from older generations. The fol-
lowing is valid for the average capacity 

φ
HardwareC  of a data center with n hardware gen-

erations, each equipped with q hardware 
units: 
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If a data center employs more than one 
hardware generation, the average capacity 

φ
HardwareC of the data center will grow slower 

than the common capacity C. The average 
capacity is equal to the common capacity in 
the special case of the data center consisting 
of only one current hardware generation: 
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The result of the first derivative is: 
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It is proven by mathematical induction, that: 
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Inequation 2.11 holds for n = 1: 
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 The inductive step for inequation 2.11 re-
sults to: 

( ) ( ) ( )( )nnn eene ⋅++ −+≤− λλλ 11 11    (2.13) 
The exponential function is eλ > 1 under the 
condition of λ > 0, hence it must be true that: 
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Fig. 1. Development of processor capacity 

 
Fig. 1 shows the development of processor 
capacity in a data center under the assump-
tions that the capacity doubles every two pe-
riods, a hardware generation is exchanged af-
ter five periods, and the initial capacity is 
8000 MIPS. 
The exponentially increasing capacity of 
hardware components are also demanded by 
the customers. The compensation of technol-
ogical progress through higher consumption 

of resources is known as the Rebound-effect 
[11]. The increase in consumption of re-
sources is called primary Rebound-effect [7]. 
The capacity of potential factors held availa-
ble does not represent the actual demand. A 
demand prognosis is necessary, in order to 
reveal the actual demand of potential factors, 
which will be discussed in the following 
chapter. 
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3. Demand Forecast 
Coming along with the production planning, 
forecasting procedures are used with the goal 
to predict the future demand of raw materials 
and supplies based on their historic demand 
[16]. In case of regular need one distinguish-
es between forecasting procedures for con-
stantly, trendily, and seasonally fluctuating 
demand. 
Procedures for trendy demand can always be 
used instead of forecasting methods for con-
stant demand. In the special case of constant 
demand the trend comes to zero [1]. Fore-
casting methods for seasonally fluctuating 
demand are most sensibly used in seasonal 
cycles. 
Linear regression is the best-known demand 
forecasting method for a trendy demand [10], 
and so is Brown’s Linear Exponential 
Smoothing [2] as well as Holt’s method [4]. 
The mentioned forecasting models rely on 
the assumption that the level of demand li-
near trend over time. This means that [16]: 

kk kbby ε+⋅+= 10    (3.1) 
The variable b0 refers to the axis’ section of 
the trend line. Factor b1 describes the slope of 
the trend line. The independent variable k 
represents the chronological course. Random 
fluctuations are displayed via єk. In formula 
3.1 єk is normal-standard distributed with an 
anticipation term of Eє = 0 [9]. 
Further forecasting procedures exist for 
trend-like courses of higher order. Lineariza-
tion is necessary in advance if these measures 
are employed [1]. The following linear trans-
formation results in case of exponential de-
mand functions [17]: 
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Production planning should adapt forecasting 
procedures as a method to determine the de-
mand of potential factors. The average capac-
ity demand of hardware units shall be esti-
mated using of this method. The application 
of forecasting procedures is useful because 
the past demand of capacities can be ascer-
tained with respective tools. Usually, only 

one third or less of the hardware capacities 
are employed. If a potential factor is not fully 
utilized, then its degree of utilization reflects 
its actual demand. Hence, the development of 
average utilization of capacity can serve as 
data base for forecasting procedures. The 
prognosis for each hardware unit is con-
ducted separately.  
The average utilization of capacity of each 
hardware component per hardware unit is de-
termined via the respective measuring tools. 
The average capacity demand c is determined 
by the average utilization of capacity of 
hardware components ŋ per hardware unit i: 

iii Cc ⋅=η    (3.3) 
The average capacity demand of a hardware 
component c results from the sum of the sin-
gle demand of capacity: 

∑
=

=
n

i
icc

1   (3.4) 
The average processor capacities displayed in 
table 1 serve as data sample. The capacity 
demand for potential factors is not free from 
seasonal fluctuations. Thus, the prognosis pe-
riod is dimensioned so that it encompasses a 
complete seasonal cycle because hardware 
units cannot be installed and de-installed 
with seasonal dependency. The shown fore-
casting procedures are applicable because the 
growth of capacity demand follows an expo-
nential trend and seasonal fluctuations must 
not be considered. 
 
Table 1. Measured average processor capaci-
ty demand 

Period t Capacity ct in MIPS ln ct 
1 95 200 11.4637
2 90 800 11.4164
3 151 600 11.9290
4 249 600 12.4276
5 257 800 12.4599
6 502 200 13.1268
7 713 500 13.4779
8 836 900 13.6375

 
In order to predict the average processor ca-
pacity demand, a linear regression, Brown’s 
Linear Exponential Smoothing, and the 
Holt’s method are conducted. The develop-
ment of demand follows an exponential 
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trend. Linearizing the exponential values ac-
cording to formula 3.2 is compulsory with 
the intention of applying the described fore-
casting procedures. The linearization results 
shown in table 1 as well. Fig. 2 shows the 
development of the average demand of pro-
cessor capacity for data centers and the linea-
rization results.  
Suitable values for parameter α have to be es-

timated with the goal of achieving satisfying 
forecast results with the Brown’s Linear Ex-
ponential Smoothing. For the estimation of 
the smoothing constant of first order, having 
n samples, the following rule is suggested 
[3]: 

1
2

1 +
=

n
α

   (3.5) 

 

 
Fig. 2. Measured values of processor capacity 

 
The smoothing constant of m-th order is re-
lated to the smoothing constant of first order 
[2]: 

( )mmαα −=+ 11 1    (3.6) 
Smoothing constant α  is estimated on α  = 
0.1181 for the eight present samples. α  is 
reused for the Holt’s method. Due to simpli-
fication reasons, smoothing parameter β is 
considered as a parameter of the next higher 
order and estimated at β = 0.0804.  
The prognosticated values of the last four pe-
riods of the respective forecasting procedure 
are compared to the relevant sample values 
with the aim of evaluating the forecasting 
procedure’s results. The sample values of the 

first four periods only serve as a data base.    
The prediction of the values for one period is 
only conducted at hand of the preceding pe-
riod’s sample values. In table 2 one can see 
the forecasting results ŷ as well as the resi-
dual values ε of the forecasting procedures 
out of the last four periods. Table also shows 
the standard deviation values of the residue 
σεt, which were calculated in an ex-post-
analysis. Holt’s method has the smallest 
standard deviation value of the residue. 
Hence, the procedure delivers the best results 
for the present sample values in cooperation 
with the given smoothing parameter. 
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Table 2. Residue values of the forecasting procedures 
 

Linear regression 
Brown’s Linear Ex-
ponential Smooth-
ing 

Holt’s method 

t α β  εt εt εt 
5 0.2254 0.1566 12.6602 -0.2003 12.6706 -0.2107 12.6603 -0.2003 
6 0.1835 0.1264 12.8404 0.2863 12.8408 0.2860 12.8405 0.2862 
7 0.1548 0.1061 13.3317 0.1463 13.3375 0.1404 13.3316 0.1463 
8 0.1340 0.0914 13.7565 -0.1191 13.7625 -0.1250 13.7564 -0.1191 
9 0.1181 0.0804 14.0539  14.0555  14.0540  

   0.0283 0.0227 0.0283 
  0.2269 0.2306 0.2263 

 
The average processor capacity demanded ĉ  
in period 9 is: 

MIPSeec y 1269000ˆ 0540.14ˆ
9

9 ≈==    (3.7) 
 

4. Conclusions 
The capacity of most hardware components 
per data center grows exponentially. The Re-
bound-effect describes the circumstance that 
the extra capacities are consumed by the cus-
tomer as well. 
Linear regression, Brown’s Linear Exponen-
tial Smoothing, and Holt’s method can be 
employed in order to predict the average ca-
pacity demand of hardware components in 
data centers. The sample data of average uti-
lization of capacity of preceding periods 
serves as data base. The hardware compo-
nents capacities are usually dimensioned so 
that their utilization of capacity is lower than 
one-third. Thus, the utilization of capacity of 
hardware components is suitable as data 
base. The data collection is conducted with 
the necessary measuring tools. 
The result of the forecast is the expected av-
erage demand of capacity for the succeeding 
period. The demand of capacity is not con-
stant over the period but is explained via a 
distribution function. Capacity shortages can 
be prevented because one can configure the 
capacity of hardware components with the 
help of statistical procedures that are based 
on the average utilization of capacity. Hence, 
the shown forecasting procedures are a cor-
nerstone for the actual capacity planning.  
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