
Revista Informatica Economică nr.3(47)/2008

115

The Cyclic Odd-Even Reduction Method
Applied in Mathematical Finance

Ion SMEUREANU

Department of Economy Informatics, Academy of Economic Studies, Bucharest, România
Dumitru FANACHE

Mathematics Department, Valahia University Târgovişte, România

In this paper is to give a possibility of reducing execution time involved in evaluat-
ing a financial option by means finite difference scheme, using a cyclic odd-even reduction
technique on a coarse-grained parallel model.
Keywords: coarse grained multicomputer, parallel algorithm, tridiagonal linear system, band
matrices, odd-even cyclic reduction algorithm.

Introduction
The general strategy for solving Black

Scholes equation is to use a change of va-
riables to transform into one that’s more
tractable, the diffusion equation([7][3]). The
terminal boundary condition becomes the in-
itial boundary condition. Once the problem
has been transformed we use algebraic me-
thods to solve it numerically. The Crank-
Nicolson finite difference equation may be
used to calculate a discretised solution to dif-
fusion equation. Importantly, initial and both
boundary conditions must be provided for a
solution to be calculable.
We seek the function V (S,t) satisfying the
PDE

∂V
∂t

+ rS ∂V
∂S

+
σ 2

2
∂2V
∂S2 − rV = 0 (1)

with the constraints:
[) [])(),(;,0;,0 SgTSVTtS =∈+∞∈ (2)

where g , the terminal boundary condition, is

the payoff at maturity of the option whose
value will be given by V . We will assume
that it does not pay dividends, and that both
the risk-free rate(r) and the underlying’s
volatility(σ) are constant over the life of the
option[7].
Analytic solutions to the PDE depend upon
the observation(see detail in [4]) that it can
be transformed into the diffusion equation in
a function u(x,τ):

∂u
∂τ

=
∂ 2u
∂x 2 (3)

with the constraints
() [])()0,(;,0;, xfxux f =∈+∞∞−∈ ττ (4)

where f , the initial boundary condition, is
g from the original formulation of the prob-
lem suitably transformed. Using a change of
variables that completely transforms (1) and
(2) into (3) and (4):

ττστ baxe
K

tSVxutT
K
Sx +=−=⎟
⎠
⎞

⎜
⎝
⎛=

),(),();(
2

;ln
2

 (5)

where: 2
22

2

2;2 arb
r

a +=
−

=
σσ

σ

 (6)

and K is an arbitrary positive constant,
usually chosen to be the strike price of the
option. Once the problem has been trans-
formed into (3) and (4), we use algebraic me-
thods to solve it numerically. Using Crank
Nicolson method in (3), we obtain:

() ()ττ bAu = (7)

In (7), matrix A is tridiagonal, symmetric,
and strictly diagonally dominated, meaning
that our equation will have a unique solu-
tion([1][4]).

2. The CGM model and Odd-Even Cyclic
Reduction method
Many current application in parallel ma-
chines are restricted to trivially parallelizable
problem with low communication require-
ments. In real machines communication time

1

Revista Informatica Economică nr.3(47)/2008

116

is usually much greater than computation
time.
The Coarse Grained Multicomputer (CGM)
model to be an adequate model of paral-
lelism sufficiently close to existing parallel
machines. It is a simple model and neverthe-
less intends to give a reasonable prediction of
performance when parallel algorithms on this
model are implemented.
In the CGM model the effort to reduce com-
munication is centered on reducing the num-
ber of communication rounds. Under this
model, we design a communication efficient
parallel algorithm for the solution of tridia-
gonal linear systems with n equation and n
unknowns. This algorithms requires only a
constant number of communication rounds.
The amount of data transmitted in each
communication round is proportional to the
number of processors and independent of n.
In addition to showing the theoretical com-
plexity, we have implemented the proposed
algorithm on a real distributed memory paral-
lel machine. The experimental results ob-
tained, indicate the efficiency and scalability
of the algorithm.
The CGM model uses only two parameters, n
and p, where n is the size of the input and p
the number of processors each with ()pnO /
local memory. Each processor is connected
by a router that can deliver messages in a
point to point fashion. A CGM algorithm con-
sists of an alternating sequence of computa-
tion round and communication rounds sepa-
rated by barrier synchronizations.
In the computation round, we usually the
best possible sequential algorithm in each
processor to process its data locally. A com-
munication round consists of a single h-
relation with pnh /≤ , that is, each proces-
sor exchanges at most a total of ()pnO / data
with other processors in one communication
round. The proposed algorithm requires the
transmission of only ()pO data in each
communication round.
In the CGM model the communication cost
of a parallel algorithm is modeled by the
number of communication rounds. The ob-
jective is to design algorithms that require a

small amount of communications rounds.
Many algorithms for graph an geometric
problems [2] require only a constant or
()pO log . Contrary to PRAM algorithms that

frequently are designed for ()nOp = and
each processor receives a small number of
input data, here we consider the more realis-
tic case of n>>p. The CGM model is par-
ticularly suitable in nowdays parallel ma-
chines where the overall computation speed
is considerably larger than the overall com-
munication speed.
A tridiagonal system is one in which all ele-
ments, except possibly those on the main di-
agonal, and the ones just above or below it,
are 0’s. Instead of the usual notation ija for
the element in row i, column j, of A, we use
di to represent the main diagonal element

iia , iu for upper diagonal element 1, +iia and

il for the lower diagonal element 1, −iia . For
the sake of uniformity, we define

010 == −nul . With the notation defined
above, a tridiagonal system of linear equation
can be written as follows, where

01 ==− nxx are dummy variables that are
introduced for uniformity.

111121

2332212

1211101

0100010

−−−−−−

−

=++

=++
=++
=++

nnnnnnn bxuxdxl

bxuxdxl
bxuxdxl
bxuxdxl

M

 (8)

Odd-even cyclic reduction ([2],[1]) is a re-
cursive method for solving tridiagonal sys-
tems of size 12 −= mn . This method is di-
vided into two parts: reduction and back
substitution. The first step of reduction is to
remove each odd-indexed ix and create a tri-

diagonal system of size 12 1 −−m . We then do
the same to this new system and continue on
in the same manner until we are left with a
system of size 1. Observe that the ith equa-
tion can be rewritten as

()()11/1 +− −−= iiiiiii xuxlbdx (9)

Revista Informatica Economică nr.3(47)/2008

117

Taking the above equation (9) for each odd i
and substituing into even-numbered equa-
tions (the ones with even indices for l, d, u

and b), we obtain for each even ()nii ≤≤0
an equation of the form:

1

1

1

1
2

1

1

1

1

1

1
2

1

1

+

+

−

−
+

+

+

+

+

−

−
−

−

− −−=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−

i

ii

i

ii
ii

i

ii
i

i

ii

i

ii
ii

i

ii

d
bu

d
bl

bx
d
uu

x
d

lu
d
ul

dx
d

ll
 (10)

In this way, the n equation are reduced to
⎡ ⎤2/n tridiagonal linear equation in the
even-indexed variables. Applying the same
method recursively, leads to 4/n equations,
then 8/n equations, and, eventually, a single
equation in 0x . Solving this last equation to
obtain the value of 0x , and substituting
backwards, allows us to compute the value of
each of the n variables. Figure 1 shows the
structure of the odd-even reduction method.
Forming each new equation requires six mul-
tiplications, six divisions, and four additions,
but these can all be done in parallel using

2/np = processors. Assuming unit-time
arithmetic operations, we obtain the recur-
rence () () nnTnT 2log882/ ≈+= for the to-
tal number of computational steps. The six

division operations can be replaced with one
reciprocation per new equation, to find jd/1
for each odd j, plus six multiplications. Ob-
viously, the above odd-even reduction me-
thod is applicable only if none of the jd
values obtained in the course of the computa-
tion is 0.
In the above analysis, interprocessor com-
munication time was not taken into account.
The analysis is thus valid only for the PRAM
or for an architecture whose topology
matches the communication structure shown
in Figure 1. A binary X-tree architecture
whose communication structure closely
matches the needs of the above computation.

*

 x12 x8 x4 x0

x0

x8 x0

 x14 x12 x10 x8 x6 x4 x2 x0

 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

* find x1 in terms of x0 and x2 from eqn. 1;
substitute x1 in eqn. 0 and 2.

Fig.1. The structure of odd-even reduction for solving tridiagonal system of linear equation

To perform odd-even reduction on linear ar-
ray of np = processors, we can assume that
each processor initially holds one of the n
equations. Direct one-step communication
between neighboring processors leads to
even-numbered processors obtaining the re-
duced set of 2/n equations as discussed
above. The next reduction phase requires
two-step communication, then four-step, and
eventualy ()2/n step, leading to linear run-
ning time(of the same order as sequential

time). On an n-processor 2D mesh, odd-even
reduction can be easily organized to require
()pΘ time. It is worth noting that solving a

tridiagonal system of linear equation can be
converted to a parallel prefix problem as fol-
lows([2][6]).
We propose here a CGM algorithm(see Fig-
ure 4) that requires a constant number of
communication rounds. By using the CGM
paradigm, however, the algorithm proposed
in this paper has been conceived indepen-

Revista Informatica Economică nr.3(47)/2008

118

dently in a relatively natural way, following
the CGM principles, namely, minimizing
communication rounds and using as much
local processing as possible. Furthermore, we
have implemented this algorithm on a distri-
buted memory parallel machine to verify its
efficiency in practice.
Consider a distributed memory parallel com-
puter of p processors 120 ,,, −pPPP L with

pn >> . Assume that each processor has suf-
ficient local memory to store ()pnO / ele-
ments. (see Figure 2). We subdivide matrix
A and the vector b into horizontal blocks or
submatrices of pn / consecutive rows each.
Each processor stores a submatrix of A and
b .

The proposed algorithm makes use of a mod-
ified version of the odd-even reduction algo-
rithm([1],[2],[6]). Each processor applies
odd-even reduction to its pn / equations and
eliminates all equation but the first and the
last ones. Thus each processor will have only
four unknowns. Each processor then send the
two remaining equations to processor 0. Pro-
cessor 0 applies odd-even reduction locally
and solves for unknowns. Each processor
receives the solved unknowns from processor
0 and solves for the remaining unknowns lo-
cally. The algorithm consists of the following
five phases (see Figure 4) alternating be-
tween local processing and communication.

…

local memoryprocessor

P0 P1 P2 Pp-1

()pnO /

()pnO /

()pnO /

()pnO /

Fig.2. A parallel computer with distributed memory

Theorem 1. A tridiagonal linear system with
n equations and n unknowns can be solved

on a CGM with p processors and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
nO lo-

cal memory per processor using ()1O com-
munication rounds with the transmission of
()pO data per round.

Proof: Step 1, 3 and 5 relate to local
processing only. Step 2 and 4 require one
communication round each. In the first com-
munication round (step 2) each processor
send a constant amount of data to processor
0, which in turn receives a total of ()pO da-
ta. In the second communication round (step
4) processor 0 sends a total of ()pO data and
each of remaining processors receive a con-
stant amount of data.
The sequential time was obtained with an op-
timized sequential algorithm run in a single
processor (not the parallel algorithm run time
one processor). For the experiment we use
the following system: 1−== ii ul for all

1,,1 −= ni L and 2=id for all
1,,0 −= ni L (with the solution of all 1=ix

for 1,,1,0 −= ni L).
We obtain an almost linear speedup for large
n, regardless of the communication protocol
utilized, as shown by the numerical re-
sults(see Figure 3 for the time curves).The
times are given in units of clock ticks of the
machine(1 clock tick =10-6 seconds).

3. Conclusions
Under the CGM model we have designed a
communication-efficient parallel algorithm
for the solution of tridiagonal linear systems.
This algorithm requires only a constant num-
ber of communication round with of ()pO
data per round. In addition to showing its
theoretical complexity, we have implemented
this algorithm on a real distributed memory
parallel machine. The experimental results
show an almost linear speedup for large n.
This is a very significant result since the par-
ticular machine we used presents a consider-

Revista Informatica Economică nr.3(47)/2008

119

able communication latency and low commu-
nication bandwidth. It indicate the efficiency

and scalability of the proposed algorithm

Fig.3. Total time of the tridiagonal algorithm in MPI

S1.

Each processor applies the odd-even algorithm locally to eliminate all rows except the first and the
last rows in its submatrix. With this, each processor iP eliminates 2/ −pn equations and 2/ −pn

unknowns, namely () 1132
,,,

−
+

++
p
in

p
ni

p
ni xxx L .

S2.

Each processor iP sends its two remaining equation (with 4 unknowns

() () 1111
,,,

+
++

+
p
in

p
in

p
ni

p
ni xxxx) to a same processor, say 0P . This processor thus obtains a system

with p2 equations and p2 unknowns. Notice that this resulting system also consists of a tridiagonal
matrix.

S3.

Processor 0P solves the system locally by od-even reduction or any other sequential method. It thus
obtains the solution for the p2 unknowns.

S4. Processor 0P sends to each processor iP the computed value for 4 unknowns in the respective equa-
tions received in step 2.

S5. Each processor performs the inverse process of odd-even reduction used in step 1, by using the solu-
tion received for its two equations to solve the remaining equations.

Fig.4. Parallel algorithm odd-even reduction

 References
[1]. Eunice E. Santos, Optimal and Eficient
Paralel Tridiagonal Solvers Using Direct
Methods , The Journal of Supercomputing,
30, 97-115,2004 Kluwer Academic Publish-
ers, The Netherlands
[2]. Behrooz Parhani,Introducing to Paral-
lel Processing(Algorihms and Architectures
(electronic format), University of California
at Santa Barbara, 2006
[3]. Ion Smeureanu, Dumitru Fanache, A
Linear Algorithm for Black Scholes Econom-
ic Model, Revista de Informatică Economică
, nr 1(45) / 2008, 150-156, ISSN 1842-8088
[4] Dumitru Fanache, Parallelised Numeric

Solutions for Implicit-Explicit Domain De-
composition, 6th International Conference
on Applied Mathematics, North University
of Baia Mare ,2008, September 18-21
[5]. C.M. Da Fonseca, On the Eigenvalues
of Some Tridiagonal Matrices, Departamento
de Matemática, Universidade de Coimbra,
3001-454 Coimbra, Portugal
[6]. R.Usmani, Inversion of Tridiagonal Ja-
cobi matrix, Linear Algebra
Appl.212/213(1994) 413-414
[7]
http://www.quantnotes.com/fundamentals/op
tion/solvingbs.html

