Negotiation processes within inter-organizational alliances

Adina CRETAN
Faculty of Cybernetics, Statistics and Economic Informatics
Academy of Economic Studies, Bucharest, România
badina20@yahoo.com

This paper describes the negotiation component of E-Alliance, a software infrastructure defined for supporting negotiation activities in concurrent inter-organizational alliances. The E-Alliance’s main intent is to preserve the autonomy of organizations grouped in an alliance. The purpose of this work is to offer support for small and medium enterprises which cannot or do not want to fulfill a big contract alone. This approach is illustrated by a sample scenario where partners are printshops grouped into an alliance to better accomplish customers’ demands.

Keywords: negotiation, middleware, virtual enterprises, multi-agent systems, interaction protocol

1 Introduction
Nowadays, the number of virtual enterprises is increasing, in particular thanks to the development of Internet. In the context of virtual enterprises, B2B interactions need to be explicitly constrained by general rules of behavior agreed upon by the participants. We therefore seek to achieve an intermediate solution to provide support to the collaborations within an alliance of organizations and we propose negotiation as a fundamental mechanism for these collaborations. The E-Alliance infrastructure allows an organization to dynamically join or leave an alliance and make autonomous decisions to progress in its collaborations. Negotiation-based collaborations may occur asynchronously following very different patterns, but of course do not preclude prior agreement between the alliance members as to how negotiation should execute. An e-alliance is more structured than a shared dataspace for collaborative work, but less structured than a workflow assigning precise roles to participant organizations and tightly scheduling their interactions.

In this paper we describe the current status of E-Alliance, showing how organizations participate to and control the status of the negotiations and how the alliance life-cycle is managed. To illustrate our approach, we use a sample B2B scenario (Sec. 2) where autonomous printshops form an alliance to better accomplish their customers’ requests.

2. Scenario
We consider a scenario (Andreoli et al., 2000) of collaborations within an alliance of distributed autonomous printshops. The alliance is a dynamic entity where new printshops may join or leave. A printshop manager interested in joining an alliance fills in an adhesion contract with information on his printshop competencies and preferences. If the alliance committee accepts it as a new partner, the new member commits to respecting the rules of the alliance and the adhesion contract and introduces itself to the other partners.

Each printshop autonomously manages its contracts, schedules etc. When a print request reaches a printshop, the manager analyses it to understand if it can be accepted, taking into account job schedules and resources availability. If the manager accepts the print request, he may decide to perform the job locally or to (partially) outsource it, given the printshop resource availability and technical capabilities. If the manager decides to outsource a job, he starts a negotiation within the alliance with selected participants. The manager may split the job into slots, notifying the partners about the outsourcing requests for the different slots. If the negotiation results in an agreement, a contract is settled between the outsourcer and the insourcer.
printshops, which defines an inter-
organizational workflow enacting the busi-
ness process fulfilling the outsourced jobs
and a set of obligation relations among par-

3. E-Alliance Requirements and Goals
The printshops alliance scenario shows a typ-
ical example of the e-alliances targeted by E-
Alliance: virtual alliances where partner or-
ganizations may \textit{a priori} be in competition
with each other, but may want to cooperate in
order to be globally more responsive to mar-
ket demand. A lot of flexibility and coordina-
tion among the partners is needed to publish
selected information, reach agreements on
how and when to accomplish customers’ re-
quests, execute and monitor contracts, han-
dling changes. E-Alliance main goal is to
provide a software support for inter-
organizational alliances enabling:
1. management of an alliance’s life-cycle, in-
cluding services for information publishing,
partners authentication, joining/leaving the
alliance;
2. collaborative activities among alliance part-
ners, through services enabling the part-
ers to negotiate, execute and monitor con-
tracts.
E-Alliance should flexibly support negotia-
tion activities in the alliance respecting the
autonomy of the partners without statically
attaching each negotiation participant a role
according to a strict protocol. Also, the me-
chanisms supporting such collaborations
should be generic enough to adapt to any
B2B context.

Moreover, E-Alliance should help the part-
ers to augment their efficiency and ability to
react to unforeseen situations, thus improving
their market competitiveness. These issues
have not been completely explored yet, al-
though a lot of work has been done on other
aspects (e.g. how to define payment mechan-
isms). We focus instead on how to:
(1) represent decentralized organizations; (2)
model the coordination of different concur-
rent interactions; (3) formalize negotiations;
(4) deploy and maintain an alliance during its
lifecycle; (5) create and administrate con-
tracts. Next section describes how the E-
Alliance approach takes into account the dis-
cussed requirements.

4. E-Alliance Approach
The E-Alliance infrastructure proposes a
multi-level architecture for providing servic-
es to assist alliance partners along their col-
laborative concurrent activities taking into
account the aspects discussed in Sec. 3. The
infrastructure (Fig.1) is organized in three
layers. A first, application dedicated, layer
specializes the generic mechanisms provided
by the other two layers according to the spe-
cific domain, e.g. the printing domain. A
second layer is dedicated to the support of
job insourcing/outsourcing within an alliance
and comprises three facilities: \textit{AllF} (alliance
life-cycle management), \textit{ConF} (contract
management), and \textit{NegF} (negotiation). The
third, middleware and coordination, layer
\textit{(CooF)} offers generic mechanisms to enact
negotiations in a distributed environment. The
\textit{CooF} is shared across the partner sites,
while the two other layers are replicated on
each partner site, enabling a decentralized
negotiation and preserving the autonomy of
the partners.

5. Alliance Facility
The goal of the \textit{AllF} facility is to support an
alliance life-cycle including: new members
subscriptions and members departures, mod-
ifications of adhesion contracts, of members
preferences, of the global rules of the al-
liance. This addresses two major issues: (1)
what kind of software architectures cope at
once with autonomy, openness and evolution
requirements of alliances; (2) what processes
to put in place in order to specify, enact, deploy such alliances. In order to maintain the global state of the alliance and to provide managers with the appropriate information, an AllF supervises the activities of the NegF and ConF to check whether the rules of the alliance are respected or not. It also gathers information in order to build a global history of the system. If an event in the life of the alliance has an impact on ongoing negotiations and contracts, the AllF interacts with the concerned facility in order to maintain the global coherence of the system. The information manipulated within the alliance includes global information, e.g. adhesion contracts, and partner local information, e.g. its representation of the others. An adhesion contract expresses the engagements between the alliance and a member, e.g. services the member will provide.

E-Alliance provides a software environment offering the users means for dynamically adding / retracting / replacing software components, without interrupting the system execution. The underlying approach relies on modeling an alliance life-cycle using the Zeta (Alloui and Oquendo, 2001) architecture description language and generating an executable code from the description into a target implementation environment called ProcessWeb (PML, 1996). The resulting software environment allows the AllF to communicate with both NegF and ConF facilities, e.g. to provide the ConF with rules to apply to a contract or to record in the history a new contract or negotiation.

6. Contract Facility

The ConF facility of a partner of the alliance manages the execution of the contracts in which that partner is involved in. The management of a contract is organized around three main steps: (1) creation; (2) execution; (3) closing.

During the creation, the ConF of the principal contractant defines a contract from the terms of the agreement reached during the negotiation by its NegF and the NegFs of the other participants in the negotiation. A lot of B2B contract models have been proposed in the literature (Grefen and Angelov, 2001). In E-Alliance a contract is composed of a business process, fulfilling the negotiation agreements, and of a normative and policy structure, ruling the participants’ behavior. Using the MOISE+ model (Hubner et al., 2002), we define the structure of a contract as a set of roles linked with each other with authority and communication links. This structural schema sets the authority structure that governs the contract. The responsibilities of the ConF of each contract participant are defined by linking the roles it can play with the part of the business process that it has to execute. These links are expressed as obligations or permissions, and are qualified by penalties in case a participant cannot fulfill a task it is responsible for.

Executing a contract consists of the distributed execution and enactment of an inter-organizational workflow between the participants and it is supported by the CooF. Different events may stop the execution of a contract and imply modifications of it. These events may be communicated by the AllF as a consequence of a change in the alliance itself. The ConF will interact with the NegF, if a new negotiation is needed, and with the AllF to make it aware of the penalties for the participants.

7. Negotiation Facility

The NegF agent of a partner manages the negotiations the partner is involved in. Fig. 2 shows the architecture of a NegF, which assists its manager at a global level (negotiations on different jobs) and at a specific level (negotiation on the same job with different participants) by coordinating itself with the NegF of the other partners through the CooF. A negotiation is organized in three main steps: initialization; refinement of the job under negotiation; and closing. The initialization step allows to define what has to be negotiated (Negotiation Object) and how (Negotiation Framework). A selection of negotiation participants can be made using history on passed negotiation, available locally or provided by the AllF. Following the approach
in (Vercouter, 2000), each participant has its own representation of the other participants and uses it to build a network of dependence relations (Sichman et al., 1994). In the refinement step, which relies on a set of speech acts (Carron et al., 1999), participants exchange proposals on the negotiation object trying to satisfy their constraints.

The manager may participate in the definition and evolution of negotiation frameworks and objects. Decisions are taken by the manager, assisted by his \textit{NegF} agent. Decision functions operate in the “Reasoning” box (Fig. 2), totally or partially automating the negotiation. For each negotiation, a \textit{NegF} manages one or more negotiation objects, one framework and the negotiation status, detailed in Sec. 8.

A negotiation object can be composed of several negotiation objects, which can be interdependent thus expressing interdependencies among concurrent negotiations. \textit{Negotiation Frameworks} gather requirements of managers on negotiations, formalizing plans for the interaction process and the degrees of autonomy in decisions and actions of the \textit{NegF}. A negotiation object has a unique negotiation framework, but a negotiation framework can cover several negotiation objects.

8. Negotiation Middleware

The \textit{CooF} is the negotiation oriented coordination middleware that supports the different processes provided by the facilities in the second layer of the E-Alliance infrastructure. It is an extension of the CLF middleware (Andreoli et al., 1999) aiming at enriching its negotiation support capabilities (Andreoli and Castellani, 2001). In CLF all the components are viewed as resource managers.

Resources can be “tangible” elements, e.g. a printer, as well as more virtual entities, e.g. a print task. CLF components make visible their resources through interfaces that define abstract services through which operations on resources are made possible. The interaction with a CLF component through one service of its interface follows a specific protocol, defined by eight “interaction verbs”, similar to speech acts, which have a meaning in terms of resource manipulations (discovery, selection, insertion and destruction). The coordination of these components, considered as resource managers, is expressed by means of high-level rule-based scripts hiding the communication protocol and directly expressing the desired resources manipulations. Specific CLF components, called \textit{coordinators}, translate scripts into invocations of the protocol on different components, realizing the abstract resource manipulation prescribed by the script. Thus, the coordinators can be considered as generic clients of the middleware platform and the client side of a CLF application can be expressed as a set of scripts. As an example, a printshop in the alliance scenario could be represented by a CLF component offering services for outsourcing/insourcing jobs (Andreoli et al., 2000). The resources held by this component are decisions to outsource or insource a job.

\textit{From CLF to a Negotiation Middleware}

The CLF protocol allows to perform multiple dependent searches for resources held by several components, but it enables only a “uni-directional” propagation of the information through the involved components. Indeed, each response sent by a server in the search phase must be a “complete” specification of the \textit{actual} resource (e.g. a given print
job) to be used in the enactment phase if and when it is performed. The server cannot return “partial” answers describing a set of potential resources and then letting the client refine that set in order to converge towards the resource to be used in the enactment, if any. The CooF is an extension of CLF supporting a multi-party, “multi-directional”, multi-attribute negotiation in the search phase of the execution of coordination scripts. It allows the resources that trigger a rule to be negotiated by successive refinements between the components involved in the negotiation.

The search tree thus becomes a “negotiation graph”, which captures the dependencies between the negotiation interactions.

A negotiation graph is a directed bi-colored graph expressing the topological structure of a negotiation: white nodes characterize the contexts in which decisions are taken; black nodes characterize alternatives in a decision. Each context (white) node in the graph contains constraints on different issues for the parameters of the service execution that is being negotiated. For example, for the services outsrc(job) and insrc(job), the (here unique) parameter of the negotiation (job) is a print job and an issue can be the price which can assume a range of possible values. Different branches of negotiation can be created in the negotiation graph to explore alternatives in terms, say, of price. The partners may then refine each branch specifying different delays.

The interaction specifying the delay would occur in the context of one or the other branch created by the interaction concerning the price. Fig. 3 shows an example of a negotiation graph.

A negotiation process is modeled as the collaborative construction of a negotiation graph among the negotiation participants. For example, a proposal made by the printshop who initiated the negotiation is represented in the graph copy visible by the outsrc service and the proposals made by printshops involved in the negotiation are represented in the graph copies visible through their insrc services.

The purpose of the CooF protocol is to allow the synchronization of the different copies (Andreoli and Castellani, 2001). So, the partners do not communicate directly, but only via a set of operations, that they perform on their negotiation graph copies and which are appropriately propagated by the CooF infrastructure.

9. Conclusions

This approach proposes a decentralized multi-issue negotiation model in which a set of agents can conduct several one-to-one conversations in a concurrent manner according to the same middleware protocol. So, each agent is able to distinguish between its possible multiple bi-lateral negotiations that characterize a negotiation state and to act according to them. This paper aims at modeling the negotiation process at least at three levels (middleware, multi-agent, and human).

All three levels must cooperate and interact in a coherent way to build the negotiation process. The middleware level manages generic negotiation mechanisms such as the propagation of alternatives, enactment and transaction primitives.

The multi-agent level provides the Manager with semi-automatic negotiation mechanisms, given the specification of protocols, tactics. Finally, the Manager, at the moment, takes the decision and makes the negotiation progress via his(er) NegF.

References

