
Revista Informatica Economică, nr. 4 (44)/2007 86

Using Java Technologies in Statistics Applications
Data Analysis Graphic Generator

Felix FURTUNĂ, Bucharest, Romania

Marian DÂRDALĂ, Bucharest, Romania

This paper proposes an idea for building a Java Application Programming Interface (API)
that allows generating statistics graphics used in Data Analysis. The core of this API is a
Java 2D library, and some classes which implement the 2D geometric transformations. The
classes are small, fast, easy to use and can be integrated into your projects, and are com-
pletely written in pure Java. It allows users to easily develop and deploy sophisticated reports
across any platform.
Keywords: Java API, Data Analysis, Graphics.

ntroduction
Th

spire
e key idea of the proposed API is in-

d by two of the data analysis methods
specific features:
• data multivariate feature that in-
volves memorizing (storing) data in tables of
large sizes;
• analyses are based a lot on graphical
representations, which better express the data
fundamental features and better comply de-
scriptive features of the methods.
• Similar approaches are used by
other Java libraries which can by applied in
Statistics applications, such as:
• Java Report Free – a Java libraries
for generating reports [3];
• Java SPSS Writer – Java API for
generating SPSS files [10];
• Java Free Chart – Java API designed
for generating pie charts, bar charts, line
charts, scatter plots etc [9].

The Data
Data Analysis Graphic Generator data is
sourced via Swing’s TableModel interface
[1][2][6]. The TableModel interface speci-
fies the methods the JTable will use to in-
terrogate a tabular data model. In standard
usage, there are three major tasks in generat-
ing reports with Data Analysis Graphics
Generator (DAGG):
• arrange for some data that can be
accessed via the TableModel interface (that
is, the model used by Swing’s JTable class);
• create a DAGG object with a Ta-

bleModel instance that contains the data;
• rendering the graphics with the
DAGG instance and pass the report to a print
or save them to the JPEG file.
The Data is designed to work with data that
is accessible via the TableModel interface.
In order to create a TableModel the following
possibilities could be taken into account [1]
[2] [6]:
• Implementing of the TableModel in-
terface;
• Extending of the Ab-
stractTableModel;
• Using of the DefaultTableModel.

For implementing the DAGG we used the
second possibility shown above, extending of
the AbstractTableModel. Any other Ta-
bleModel could be converted to this one. The
TableModel implementing class looks like
this:
import javax.swing.table.*;
import java.util.*;
import javax.swing.*;
public class TabelDeDate extends Ab-
stractTableModel {
private Vector linii=new Vector(),coloane;
public TabelDeDate(Vector coloane)
{ this.coloane=coloane; }
public Class getColumnClass(int indice-
Coloana) {
 Vector v=(Vector)linii.elementAt(0) ;
 return
v.elementAt(indiceColoana).getClass();
}
public int getRowCount(){ return linii.size();

I

Revista Informatica Economică, nr. 4 (44)/2007

87

}
public int getColumnCount() { return
coloane.size(); }
public Object getValueAt(int row,int col-
umn){
 Vector
v=(Vector)linii.elementAt(row) ;
 return v.elementAt(column);
}
public String getColumnName(int indice-
Col)
{ return
coloane.elementAt(indiceCol).toString(); }
public void aduagare(Vector v) {
linii.addElement(v); }
}
The conversion from some TableModel to
the main TableModel could be as follows:
public DataAnalysisGG(TableModel model)
{
 Vector v=new Vector();
 for(int
i=0;i<model.getColumnCount();i++)
v.addElement(model.getColumnName(i));
 tabel=new TabelDeDate(v);
 for(int i=0;i<model.getRowCount();i++){
 v=new Vector();
 for(int
j=0;j<model.getColumnCount();j++)
v.addElement(model.getValueAt(i,j));
 tabel.adaugare(v);}}
For further information about TableModel go
to Sun’s Java website: http://java.sun.com/.
In order to generate the graphics using data
accessed via JDBC, DAGG can be used for
generating a TableModel instance from a
JDBC ResultSet.
Building graphic representations using
Java2D
The Java 2D library belongs to Java Founda-
tion Classes (JFC) [4]. The Java Foundation
Classes are a graphical framework for build-
ing portable Java-based graphical user inter-
faces (GUIs). JFC consists of the Abstract
Window Toolkit (AWT), Swing and Java
2D. Together, they provide a consistent user
interface for Java programs, regardless
whether the underlying user interface system
is Windows, Mac OS X or Linux. The Java
2D API is a set of classes for advanced 2D

graphics and imaging [5]. The most impor-
tant Java2D class is Graphics2D. This class
inherits the ancient Graphics class. The fol-
lowing are some of the properties that the
Graphics2D class provides:
• Background – Allows a Color object
to be specified as the default color that ap-
pears when portions of the graphics context
are erased.
• RenderingHints – Controls the qual-
ity of graphics rendering.
• Paint – Instead of a simple color,
the Paint interface can be used to fill shapes
with any solid, gradient or pattern. Under
Java 2D, the Color class has been modified
to implement the Paint interface.
• Stroke – Java 2D supports the Stroke
interface to describe a virtual pen to draw
lines and curves with various widths, colors
and patterns.
• Transform – Supports the use of
Transformations. The Transform property of
Graphics2D is of type
java.awt.geom.AffineTransform and repre-
sents a mathematical rule expressed as a 3-
by-3 matrix. This transformation is applied to
all operations as they are rendered by the
Graphics2D object.
• Composite – Controls what happens
when drawing operations overlay already
colored-in pixels. The value of the property
is of type java.awt.Composite, which is an
interface that describes how colors are sup-
posed to combine.
Case Study
In the following lines we are bringing up a
graphical example of Principal Components
Analysis [7][8]. It’s a graphical projection of
the cases on the factor-plane into the first two
axes corresponding to the first two principal
components. Data are sourced from a MS
SQL Server database table and have the fol-
lowing structure: ch_hr – food expenses,
ch_b – drink expenses, ch_int – utilities ex-
penses, ch_ii – footwear and clothing ex-
penses, ch_c – domestic expenses, ch_m –
furniture expenses, representing the main ex-
penses of a common family in some UE
countries. The Java sequence code for build-
ing the data model and its graphical represen-

http://java.sun.com/

Revista Informatica Economică, nr. 4 (44)/2007 88

Conclusions tation are:
try{
 Connection
c=DriverManager.getConnection(urlConexi
une);
 Statement
s=c.createStatement(ResultSet.TYPE_SCRO
LL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 ResultSet r=s.executeQuery
("select ch_hr,ch_b,ch_int,ch_ii,ch_c,ch_m
from chetuieli");

Data Analysis Graphic Generator covers
graphical representations for Principal Com-
ponents Analysis, Cluster Analysis, Factor
Analysis, Discriminant Analysis, Canonical
Analysis, Correspondence Analysis, Multi-
dimensional Scaling, but it is open for any
kind of development based on graphical rep-
resentation of data stored in matrix format.
MVC philosophy that the library was built on
allows this approach.

 DataAnalysisGG d=new DataAna-
lysisGG(r);

References
• * *, Java Platform Enterprise Edition 5.
API Specifications , http://java.sun.com/
javaee/5/ docs/api

 r.close();
 r=s.executeQuery("select nume from
tari"); • * *, The Java Tutorials,

http://java.sun.com/docs/books/ tuto-
rial/uiswing/ index.html

 String et[]=new String[r.getRow()];
 int i=0;

• ***, Java Free Report Documentation ,
http://www.jfree.org/jfreereport/ index.php

while(r.next()){et[i]=r.getString(1);i++;}
 r.close(); • * *, Java Foundation Classes,

http://java.sun.com/products/jfc/index.jsp/ d.ACPIndivizi(0,1,et);
• Fraizer, C., Bond, J., Java API: manualul
interfeţei de programare a aplicaţiilor, Bu-
cureşti, Teora, 1998.

 }
 catch(Exception
e){javax.swing.JoptionPane.showMessageDi
alog • Tănasă, T., Olaru, C., Andrei, S., Java de

la 0 la expert, Iaşi, Polirom, 2003 (null,"Eroare!!!"+e);}
• Jobson, J.,D., Applied multivariate data
analysis, New York, Springer, 1992

• Voineagu, V., Furtună, F.,Voineagu, M,
Stefănescu, C., Analiza factorială a fenome-
nelor social-economice în profil regional,
Editura Aramis, Bucureşti, 2002
• * *, JfreeChart Documentation,
http://www.jfree.org/jfreechart/index.html
• * *, Java SPSS Writer,
http://spss.pmstation.com/

Figure 1. The graphical representation

http://java.sun.com/%20javaee/5/%20docs/api
http://java.sun.com/%20javaee/5/%20docs/api
http://java.sun.com/docs/books/%20tutorial/uiswing/%20index.html
http://java.sun.com/docs/books/%20tutorial/uiswing/%20index.html
http://www.jfree.org/jfreereport/%20index.php
http://java.sun.com/products/jfc/index.jsp/
http://www.jfree.org/jfreechart/index.html
http://spss.pmstation.com/

