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Data mining is an evolving and growing area of research and involves interdisciplinary re-
search and development encompassing diverse domains. In this age of multimedia data explo-
ration, data mining should no longer be restricted to the mining of knowledge from large vol-
umes of high-dimensional data sets in traditional databases only.  The aim of the paper is to 
present guidelines in fuzzy modeling, fuzzy clustering and the design of Bayesian inference 
networks. 
Keywords:  fuzzy modeling, fuzzy clustering, c-means algorithm, Bayesian networks 
 

NTRODUCTION 
In

many
 the old days, system analysts faced 
 difficulties in finding enough data to 

feed into their models. The picture has 
changed and since databases have grown ex-
ponentially, ranging in size into the terabytes 
within these masses of data being hidden in-
formation of strategic importance, the reverse 
picture becomes a daily problem-how to un-
derstand the large amount of data we have 
accumulated over the years. When there are 
so many trees, how do we draw meaningful 
conclusions about the forest?  Research into 
statistics, machine learning, and data analysis 
has been resurrected. Unfortunately, with the 
amount of data and the complexity of the un-
derlying models, traditional approaches in 
statistics, machine learning, and traditional 
data analysis fail to cope with this level of 
complexity. The need therefore arises for bet-
ter approaches that are able to handle com-
plex models in a reasonable amount of time.    
Data mining is an evolving and growing area 
of research and development, both in acade-
mia as well as in industry. It involves inter-
disciplinary research and development en-
compassing diverse domains. In this age of 
multimedia data exploration, data mining 
should no longer be restricted to the mining 
of knowledge from large volumes of high-
dimensional data sets in traditional databases 
only. Researchers need to pay attention to the 
mining of different datatypes, including nu-
meric and alphanumeric formats, text, im-
ages, video, voice, speech, graphics, and also 

their mixed representations. Fuzzy sets pro-
vide the uncertainty handling capability, in-
herent in human reasoning, while artificial 
neural networks help incorporate learning to 
minimize error. Genetic algorithms introduce 
effective parallel searching in the high-
dimensional problem space.  
 
2 CLUSTER ANALYSIS 
Cluster analysis is a method of grouping data 
with similar characteristics into larger units 
of analysis. Since Zadeh, 1965, first articu-
lated fuzzy set theory which gave rise to the 
concept of partial membership, based on 
membership functions, fuzziness has re-
ceived increasing attention. Fuzzy clustering, 
which produce overlapping cluster partitions, 
has been widely studied and applied in vari-
ous area (Bezdek, 1999). So far, there have 
been proposed a relatively small number of 
methods for testing the existence/inexistence 
of a natural grouping tendency in a data col-
lection, most of them being based on argu-
ments coming from mathematical statistics 
and heuristic graphical techniques (Panayirci 
and Dubes,1983, Smith and Jain,1984,Jain 
and Dubes,1988, Tukey,1977, Everitt,1978). 
The data are represented by p-dimensional 
vectors,

I 

( )1,...,
t

pX x x= , whose components are 
the feature values of a specified attributes 
and the classification is performed against a 
certain given label set. The classification of a 
data collection { } pX1,..., nXℵ= ⊂ℜ  corre-
sponds to a labelling strategy of the objects 
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of ℵ .  
In the fuzzy approaches, the clusters are rep-
resented as fuzzy sets ( ),1iu i c≤ ≤ , 

[ ]:ℵ→ 0,1iu , where  ( )ik i ku u X=  is the 
membership degree of  to the i-th clus-
ter,1 , . A c-fuzzy partition is 
represented by the matrix 

kX
i c≤ ≤ 1 k n≤ ≤

ik c nU u M ×= ∈ . 
The number of labels c has to be selected in 
advance, the problem of finding the optimal c 
is usually referred as cluster validation.  The 
main types of label vectors are crisp Nc,  
fuzzy Np, and possibilistic Npoz, defined as 
follows, 
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Obviously, pos p cN N⊃ ⊃ N . If we denote by 

[ ]1,..., n iU U U u= = j  a partition of ℵ , then, ac-
cording to the types of label vectors, we get 
the c-partition types Mpos, Mp and Mc, 

[ ]{ ,,...,,| 1 nncpos UUUMUUM =∈= ×
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{ }, ,p pos k pM U U M k U N= ∈ ∀ ∈                           

    (6) 
{ }, ,c p k cM U U M k U N= ∈ ∀ ∈                               

    (7) 
Note that c p posM M M⊂ ⊂ .  
 
3 C-MEANS MODEL 
In fuzzy clustering, the fuzzy c-means clus-
tering algorithms are the best know and most 
powerful methods used in cluster analysis 
(Bezdek, 1981).  
The variational problem corresponding to c-
means model is given by  
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( ) ( )2

, 1 1 1 1
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c n c n
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    (8)  
where ∈U Mc/Mp/Mpos, ,  
is the centroid of the i-th cluster, 

( ) pcc MvvV ×∈= ,...,1 iv

( )Tcwww ,...,1= is the penalties vector corre-
sponding to the cluster system, is the 
fuzzyfication degree, and 

1≥m
22

ikik vxD −= . Let 
( )VU ˆ,ˆ be a solution of (8). Then,  
1.The crisp model: 
( ), ; 0,1c c p iU V M M w i c×∈ × = ≤ ≤ ,
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2.The fuzzy model:  
( ), ; 1, 0,1p c p iU V M M m w i c×∈ × > = ≤ ≤  

12
1

1

ˆ
mc

ik
ik

j jk

Du
D

−

−

=

⎡ ⎤
⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ , 1

1

ˆ

n
m
ik k

k
i n

m
ik

k

u x
v

u

=

=

=
∑

∑
;  

1 ,1i c k n≤ ≤ ≤ ≤                                  (11) 
3.The possibilistic model: 
( ), ;pos c p iU V M M i w× , 0∈ × ∀ > ,  
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The general scheme of a cluster procedure ℘  
is ,   
t←0 
repeat 
   t←t+1; ( )1−℘← tt VFU ;  ( )1−℘← tt UGV

until ( )ε≤−= −1tt VVorTt  
( ) ( )tt VUVU ,, ←  
 
where c is the given number of clusters, T is 
upper limit on the number of iterations, m is 
the weight parameter,1 , C is the ter-m≤ < ∞
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minal condition, w is the system of weights 
,  is the initial 

system of centroids and ,  are the up-
dating functions. 

, 0ii w∀ > ( )0 1,0 ,0,..., cV v v M ×= ∈ c p

℘F ℘G

 
4 BAYESIAN NETWORKS 
The causal relationships are weighted by in-
tensity factors assigned to the edges of a 
causal network. One of the major limitations 
of the computational model is that it does not 
include suitable features in case of feedback 
relationships, therefore it can be applied only 
to acyclic causal networks. The structure of a 
Bayesian network is given by the following 
components: a directed acyclic graph (DAG), 
to each variable corresponds a finite set of 
states such that the set of states are pairwise 
disjoint. For each variable A, the table of the 
values corresponding to the condition prob-
abilities ),...,,( 21 kBBBAP is available, where 

 are the parental variables of A.  
In case A has no parental variables, then the 
table P(A) of the values of the probability 
distribution defined on the state set of A is 
available. 

kBBB ,...,, 21

Because the structure of a Bayesian network 
is not directly related to causality, that is the 
links between the variables do not express 
necessarily causal impact relationships, D-
separation properties have to be imposed. In 
particular, this implies that if A and B are 
separated on the basis of the evidence ξ , 
then P(A|ξ)=P(A|B, ξ) holds. Let 

 the universe of variables. In 
case the joint probability distribution 

 is known, then, for any 
evidence ξ, the marginal probability distribu-
tions P(A

{ nAAAU ,...,, 21= }

( ) ( )nAAAPUP ,...,, 21=

i) and P(Ai|ξ), ni ≤≤1  can be com-
puted. 
Obviously, the size of the memory required 
to retain the values of the probability distri-
bution P(U) depends exponentially on n, 
therefore the design of a Bayesian network 
assumes finding compact ways to represent 
the information needed in the evaluation 
process of the components of the probability 
distribution P(U) and its marginals. Several 
remarks can prove useful in such attempts.      
Remark 1. Let BN be a Bayesian network 

for { }nAAAU ,...,, 21= . If we denote by par-
ent(A) the set of parental variables of A, then 
for each variable Ai, the relation 

 holds. ( ) ( )∏
=

=
n

i
iAparentUP

1

Remark 2. If A, B, C  are serial connected, 
then ( ) ( )BCPBACP =, .                 
Remark 3. (convergent connection) If par-
ent(C)={A,B}, then ( ) ( )APBAP = .    
In case additional information is acquired, a 
Bayesian network allows to update the values 
of the probability distributions. For instance, 
assume that the size of the state set of A is n,  
( ) { }ns pppAP ,...,,1= and the acquired informa-

tion is  e=”the variable A can be either in 
state i or in state j”. This means that all states 
of A different from i,j become impossible, 
hence 
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The computation of 
( ) ( )0,...0,,0,...,0,,0,...0,0, ji ppeAP =  can be car-

ried out as a product of the vectors P(A) and 
. Using  ⎟

⎠
⎞⎜

⎝
⎛ 0,...0,1,0,...,0,1,0,...0,0

ji

( ) ( ) ( )ePeAPeAP /,= , the a priori distribution 
P(e) can be computed as, 
( ) ( )∑=+= eAPppeP ji , . 

If A is a variable having n states, a table with 
n entries belonging to {0,1} is referred as re-
striction imposed on A. Obviously, a restric-
tion imposed on a variable expresses the pos-
sibility/impossibility of its states. Usually, a re-
striction is denoted by e .  
If P(U) is the table representing the joint 
probability distribution and e  is a restriction 
imposed on the variable A, we denote by 
( )eUP ,  the table obtained from P(U) by re-

placing by 0 all components whose counter-
part in e  equals 0. P(U,e)=P(U) e . Note that  
( ) ( ) ( )∑∑ ==

UU
eUPeUPeP , . 

Remark 4 If neee ,...,, 21  are restrictions im-
posed on the variables of a Bayesian network 
BN of universe U, then 
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