
Revista Informatica Economică, nr. 4 (44)/2007 45

Developing a Web Server Platform with SAPI
Support for AJAX RPC using JSON

Iulian ILIE-NEMEDI, Bucharest, Romania, inemedi@ie.ase.ro

Writing a custom web server with SAPI support is a useful task which helps students and fu-
ture system architects to understand the link between network programming, object oriented
programming, enterprise application designing patterns and development best practices be-
cause it offers a vision upon inter-process communication and application extensibility in a
distributed environment.
Keywords: Web, Server, Proxy, SAPI, HTTP, RPC, AJAX, JSON, XML.

I

n nowadays, writing a custom web server
from scratches seams like a nonsense task.

So, why implementing your own web server
when there are a lot of options to choose
from, like Apache or IIS. If we need a free
application server then we can also use Tom-
cat, JBoss, JOnAs, Jetty, and so on. There-
fore, first we have to explain the purpose of
this article. Implementing a web server plat-
form with SAPI support is a nontrivial task,
which involves knowledge from different ar-
eas like network programming, object ori-
ented programming, enterprise application
designing patterns, web development and
more. This task is nevertheless a challenge
which will provide useful experience for un-
derstanding and teaching network concepts,
like protocols, services, client-server or re-
quest-response patterns and it can be used as
an example, like a guide of writing web serv-
ers from scratches. Our implementation can
be used as well as a lite server platform for
web development, since it will support the
latest technologies in remote procedure call-
ing combined with AJAX. In fact, it started
as an alternative to a more complex
ASP.NET, JSP, or even PHP developing en-
vironment, which requires technical and ad-
ministrative resources, like special config-
ured servers for project publishing. There-
fore, developing a small but extensible web
server platform looks like a very useful chal-
lenge which will combine networking theory
with development best practices. Now that
we know how it stands, let’s focus on our
task. A web server is an application that lis-
tens for HTTP requests and delivers re-
quested resources to application clients

through a process which involves both file
streaming and custom module execution.
This can be done by opening a socket, bind-
ing to a network interface and starting a new
thread which accepts client connections, redi-
rect them to dedicated external sockets, ex-
tract HTTP request from each client socket,
compose a HTTP response based on client
demand and send it back to the client. Before
listening for incoming requests, we’ll config-
ure our server by reading an XML configura-
tion file using C# declarative serialization
support. We define a set of configuration
classes, one for each type of tag found in the
configuration file, which will be used by an
XmlSerializer to deserialize the text file. Our
server will listen on localhost if Listen is set
to Internal, or on the first available network
interface if External. We can also configure
its HTTP port, identification name and con-
nection pending queue. To publish a direc-
tory we have to specify an alias for its virtual
path and a physical mapping directory. Any
request will be mapped using these settings
by a MapPath function, which will search for
path matching into virtual directories collec-
tion. Our server looks for additional default
documents when a directory alias is re-
quested, which can be defined by Defaults
option. As required by HTTP protocol, we
provide MIME mapping for any extension
delivered by our server. Modules section
maps custom module to its extension. A cus-
tom module is a dynamic library loaded from
a .NET assembly which has a type that im-
plements IModule interface to handle an ex-
tension-based request. Our server implements
the following methods and properties:

mailto:inemedi@ie.ase.ro

Revista Informatica Economică, nr. 4 (44)/2007 46

internal class Server : IServer{
public Server(string configFile){…}
private void LoadConfigura-

tion(string configFile){…}
public string MapPath(string

path){…}
private string MapPath(string path,

bool useDefaultDocument){…}
private void Send(Socket socket,

SAPI.Response response){…}
public void WriteLog(string message,

params object[] arguments){…}
public SAPI.IModuleConfiguration

ModuleConfiguration{get{…}}
private void Run(){…}
private SAPI.IModule LoadMod-

ule(Configuration.Module module){…}
private void Process(Socket

socket){…}
private byte[] ReadFile(string

path){…}
private string GetStatusCodeDescrip-

tion(HttpStatusCode statusCode){…}}
While listening for incoming requests, our
server splits its workflow into simple tasks,
like accept client connections and process
accepted socket. Any exception will be for-
matted with timestamp and additional infor-
mation and than logged into a file. When
processing a request, first we deserialize cli-
ent call into a Request object, which extracts
HTTP headers and additional body data. This
will hold Query string and Form arguments
as well. Than we instantiate a Response ob-
ject and use it to store output data, which will
be sent to the client. Since this is a demon-
stration, we won’t use direct streaming to the
client socket, but write intro a memory
stream instead. If an exception occurs while
trying to process the client request, then we
set the response status code to 500 (Internal
Server Error) and write to response output a
HTML file explaining that an internal server
error has occurred. Our server answers only
to GET and POST verbs from HTTP. It looks
into module list to find the appropriate mod-
ule used to process request by its extension.
If none was found, then if requested path
could not be mapped to an existing file, or
default directory document, we set status

code to 404 (Not Found) and output a HTML
file to the client explaining that the requested
resource couldn’t be found. If requested re-
source is mapped to an existing file, then we
set the content type of the HTTP response by
searching the MIME for file extension into
MIME configuration, and than we read file
content into response output, setting the
Status Cod to 200 (OK). Since response is
completed, we send it to the client using a
Send method, than log action and close client
socket. In this way, our server delivers static
resources stored into file system. If the re-
quest targets an extension handled by a cus-
tom module, then we load its assembly using
reflection and invoke the Process method
implementation from module type, passing
reference to this server, and to the current re-
quest and response objects. Both Request and
Response classes implements their corre-
sponding interface from SAPI. A SAPI
(Server Application Programming Interface)
provides extensibility support to implement
and host custom modules into an application
server which will be used to process custom
extensions. In a straightforward approach
we’ll define an IServer interface providing a
mapping method called to map a virtual path
to a physical file or directory, a logging
method by which a module can log its errors
and exceptions into server log file, and also
details regarding module configuration like
its extension, so that any request will be able
to extract its virtual path without extension:
public interface IServer{

SAPI.IModuleConfiguration Mod-
uleConfiguration{get;}

string MapPath(string path);
void WriteLog(string message,
params object[] arguments);}

Further more, we define an IRequest inter-
face used to access information extracted
from HTTP request by the server, like URL,
method, GET Query String, POST Strings,
headers or client Remote EndPoint:
public interface IRequest{

NameValueCollection Query{get;}
NameValueCollection Form{get;}
string Url{get;}
string Method{get;}

Revista Informatica Economică, nr. 4 (44)/2007 47

string Version{get;}
NameValueCollection Headers{get;}
string RemoteEndPoint{get;}}

We need to specify also an IResponse inter-
face which will be used by a given module to
output its processing result, having methods
to write data to the output stream, eventually
with formatting support, and also access to
HTTP response headers and status code:
public interface IResponse{

void Write(string format, params ob-
ject[] arguments);

void WriteLine(string format, params
object[] arguments);

void Write(byte[] data, int offset, int
count);

void Write(byte[] data);
Stream Stream{get;}
HttpStatusCode StatusCode{get;set;}
string ContentType{get;}
NameValueCollection Head-

ers{get;}}
Since in the IServer interface we get access
to module configuration, this can be done by
having another IModuleConfiguration inter-
face which will be implemented by the server
through a ModuleConfiguration class, which
is used to deserialize data from a configura-
tion file:
public interface IModuleConfigura-
tion{string Extension{get;}}
The IModule interface contains only one
method, Process, which is called to process
requests handled by the current module:
public interface IModule{void Proc-
ess(IServer server, IRequest request, IRe-
sponse response);}
Note that the Process method is the core ex-
tension point by which our server is more re-
silient than a simple layered web server be-
cause it can plug-in future extensions by that
entry point. Since it receives references to
server, request and response, the Process
method is able to intercept HTTP communi-
cation and build its own output to the client,
based on demand. To illustrate the SAPI in-
terface, we can implement a simple module,
which handles, for instance, .smp extension
by outputting variables received from a
HTML form. All we have to do is testing the

request method and iterate through Query or
Form collection to build a HTML list output.
Than we can register our simple module into
Modules section and test a HTML form that
sends data to a fictive .smp file on our server.
A more complex example can configure and
run SQL queries against a relational data
store and output a XML serialization of re-
sults, delivered by a query builder module for
.xsql extension. Since we have SAPI support,
we can extend our server basic functionality
to execute remote procedure calls (RPC) that
will handle JavaScript client requests made
using AJAX. AJAX (Asynchronous
JavaScript and XML) is a new approach in
building dynamic web pages which enables a
web page to make client request to server
scripts or applications using XMLHttpRe-
quest or ActiveXObjects supported by
browsers. The typical scenario for which
AJAX was intended is a web application that
manages data displayed and editable into a
large client grid. In order to save any change,
a client must submit data to the server, which
will reload the entire grid, even though only
one record has been changed. To avoid
transport overhead, as well as controls state
management issues, AJAX makes HTTP re-
quest directly from client JavaScript, send
changes to server-side scripts, receives new
data and displays it using the DOM model
for HTML tags. At the beginning, AJAX
used XML for object serialization and dese-
rialization, which proved to be inefficient in
this context. Although XML is widely spread
through object serializers of application serv-
ers, it is not suitable for client deserialization,
since it requires additional DOM parsers. We
can use JSON (JavaScript Object Notation)
instead, because a JSON serialized object can
be extracted only by calling the eval func-
tion. We have to implement a JSON parser
and builder which will receive strings from
requests and extract C# (Java, or PHP) ob-
jects, and in the same time will be able to se-
rialize a given object into a JSON string. Al-
though this task is a little bit trivial in PHP, it
is difficult in C# or Java, since we have to
produce a strongly time object from a naked-
type string. Fourth generation languages like

Revista Informatica Economică, nr. 4 (44)/2007 48

C# uses runtime XSD schema to deserialize
object from naked-type XML, which is not
easy to handle from client JavaScript. Event
though server can send schema to the client,
adding information to it is a complicated is-
sue on the client. Therefore, we must imple-
ment JSON deserialization in C# or Java
without schema, which is impossible unless
we know it from somewhere else, like
method signatures. We’ll explain in this arti-
cle how to implement in C# a remote proce-
dure caller using JSON serialization. The cli-
ent will send call request using an
XMLHttpRequest or an ActiveXObject. Each
call will target a method of a given type from
an assembly published on the server. So, the
client will serialize into JSON a post argu-
ment with these information and will expect
a response containing method result or an ex-
ception if this is the case. First, we create a
JSON serializer, which will serialize into
JSON any C# object by extracting its sub-
objects from public fields and properties:
internal static string Serialize(object obj){…}
private static string Serialize(FieldInfo field,
object obj){…}
private static string Serialize(PropertyInfo
property, object obj){…}
We can do that by loading the assembly file,
searching the given type by its name and get
all public fields and properties using reflec-
tion. Than we have to implement two meth-
ods, one for object deserialization and the
other for array deserialization, since they are
represented in different ways:
internal static object DeserializeObject(string
data, Type type){…}
internal static object DeserializeArray(string
data, Type type){…}
In order to do this, we have to write other
two helper methods, which split an object or
an array into members:
internal static NameValueCollection SplitOb-
ject(string data){…}
internal static string[] SplitArray(string
data){…}
Now we are able to extract client arguments
and compose server response. All we have to
do is to implement an RcpModule like this:
public class RpcModule : SAPI.Imodule{

public void Process(SAPI.IServer
server, SAPI.IRequest request,
SAPI.IResponse response){…}

private static void Proc-
essCall(SAPI.IServer server, SAPI.IRequest
request, SAPI.IResponse response){…}

private static void Proc-
essSearch(SAPI.IServer server,
SAPI.IRequest request, SAPI.IResponse re-
sponse){…}}
In the Process method we search into request
object for the call argument given by the cli-
ent, and execute ProcessCall if found it. Oth-
erwise, we can search for callable assem-
blies, types and methods into given virtual
path of the client request and display a self-
description HTML page. The ProcessCall
method loads the requested assembly, extract
call type and execute call method by its name
with the given arguments deserialized using
our JSON serializer. If any exception occurs,
then it will be serialized into result exception
property, as well as reported into log file by
calling WriteLog method of the server object
given as argument. Method’s result will be
sent as result value and serialized as JSON
string to client. The JavaScript client will
have a helper proxy and a JSON serializer;
there is no need for a JSON deserializer since
deserialization is done simply by calling eval
function with the result string received from
the server. We implement the serializer using
singleton pattern, which allows us to call it
directly without having to instantiate it, re-
member that JavaScript is only object-based
language and not object oriented so it doesn’t
allow static methods on classes. The proxy
will create an asynchronous HTTP request
containing posting data with call arguments
and will send it to the server. It will also reg-
ister a callback client function for the On-
ReadyStateChange event of the
XMLHttpRequest or ActiveXObject used to
execute the callback function with the re-
ceived data from the server, or to handle
server side exception received as well. A cli-
ent can call remote methods by executing
Proxy.Invoke method and register a callback
in which the result may by processed. Note
that by using JSON, any client object will be

Revista Informatica Economică, nr. 4 (44)/2007 49

sent to the server and any object created by
the server will arrive to the client as if it was
created there. The serialization protocol al-
lows simple extraction of result value or ex-
ception as well as natural representation of
the calling arguments. There are a lot of RPC
API-s for AJAX. Most of them use JSON,
but there are some which use XML also.
They are targeting different server languages
like C#, Java, PHP, Python, Ruby, etc. The
most complex ones have even server-to-
client type registration, which enables better
call integration by generating client wrappers
for server methods using self-documented
binaries, like C# attributes or Java annota-
tions. This article was intended to describe a
wide integration between web servers, RPC
and serialization modules, by designing and

developing from scratches a web server plat-
form which provides SAPI extensibility for
custom modules like AJAX RPC with JSON
serialization. Its result is a platform which
might help students to understand network
concepts and how web application servers
are built, as well as providing them a useful
tool for developing their own complex web
applications enriched with asynchronous
communication with the server and remote
procedure calling.

References
Crane D., Pascarello E. – AJAX in Action,
Manning, 2006
JSON – http://www.json.org
JSON-RPC – http://json-rpc.org

http://json-rpc.org/

