
Revista Informatica Economică, nr. 3 (43)/2007 14

Innovative Digital Learning

Ion SMEUREANU, Bucharest, Romania, smeurean@ase.ro
Gheorghe RUXANDA, Bucharest, Romania, ghrux@ase.ro

The new programming technologies allow for the creation of components which can be auto-
matically or manually assembled to reach a new experience in knowledge understanding and
mastering or in getting skills for a specific knowledge area. A Visual C# .NET implementation
under development is discussed.
Key-words: learning component, user control, automatic assembly, adaptor.

ntroduction
E-

nique
learning groups methods and tech-
s, traditional or computer aided (like

multimedia processing, asynchronous or syn-
chronous communication, web pages, large
databases etc.) assisting the subject in the
learning process.
In 1997 Maddux, Johnson and Willis pro-
vided a simplified approach for educational
software classification; they defined two ap-
plication type levels:
• First level includes software applications
which are targeted for an easier, more intense
and more efficient delivering of the same
knowledge as in the classic method. The user
involvement is low, the software pre-
determines almost all that is going on the
display; interaction between user and com-
puter is pre-configured by the software au-
thor; user contribution complies with a pre-
determined scenario; applications aim to ac-
quire knowledge by memorizing.
• Second level applications mean new and
more efficient learning techniques. They allow
more active involvement of the user; the user
controls everything that happens; user-
computer interaction is driven by user at run-
time; there is an extended range of inputs and
actions accepted by the computer; creative ac-
tions prevail.
2. E-learning and innovation: component
learning model
In practice, as in specialized literature, the
concept of learning object is intensely used,
but it is not strictly defined. A learning object
is defined as any entity, digital or non-digital,
that may be used for learning, education or
training (IEEE, 2002); it can be reused or ref-
erenced any time in a computer-based learn-

ing process. Examples of such objects are
prints, studies, exercises, texts, audio lessons,
courses, curricula etc.
The learning component is an object im-
plementing interfaces; these interfaces make
it able to recognize other related objects with
which it can interact inside a semantic net-
work. Functionally, the components are
small executable pieces which interact with
each other even during the design time of a
client application; they complete one an-
other, they bring themselves new properties
and references through which they connect,
"coupling" and acting as a whole (this is
where the term component comes from).
The success of new learning technologies is
related to the paradigm-shift, from traditional
content-centered and instructor-led models
towards an interactive focus on the
teacher/learner. Component-based learning
is the process of assembling existing soft-
ware components in an application in such
a way that they interact to get a prede-
fined functionality.
The task of content management is partially
accomplished by learning components, in a
way that innovative digital learning objects
can be developed; they are capable to inter-
pret, contextualize and react depending on
the architecture where they are assembled.
The semantic model can be partially sup-
plied by the human subject because learning
components can be assembled manually, so
as to provide a large opportunity both for
students and professors to exercise their crea-
tivity and vision, and to conceive and de-
velop learning resources by themselves. An
important feature of e-learning systems based
on learning components is that both teachers

I

mailto:smeurean@ase.ro
mailto:ghrux@ase.ro

Revista Informatica Economică, nr. 3 (43)/2007 15

and learners can become active producers
of educational content. Tools for high qual-
ity content authoring are already available
and anyone with enough creativity can com-
pete in innovation. Component-based educa-
tion requires active engagement of students'
effort over an extended period of time, pro-
gressive and innovative. The students ex-
periment, learn from failures, reply to the
challenges and become deeply involved.
Even the homework can be delivered as
component-based activities.
Objects used for learning exist and cooperate
at different levels of granularity. We no
longer talk of individual objects, but of learn-
ing frameworks that can work in two inter-
changeable modes:
– author, when professor and student cre-
ate and test training applications;
– reader, when already authored lessons
are experienced.
The framework has to support two kinds of
processes: the decomposition of learning
objects into their components as well as the
automatic or manual assembly of these
components in real-world applications. It is
not enough that learning objects satisfy some
formal criteria of coupling/decoupling; the
aggregation must also be pedagogically ef-
fective. The coupling /decoupling of learning
objects is a considerable challenge, mixing
ideas from pedagogy and software engineer-
ing [4]; the challenge is to attain new signifi-
cance by composing reusable components;
some advantages are revealed in the example
below, which is about learning objects for
mathematics.
Personalizing the learning process means
creating a development plan that is perfectly
adapted to the knowledge level, needs, ex-
pectations, personal pace and learning habit
of the student. Intelligent e-learning systems
aim to implement customized learning mod-
els; a personalized course can be configured
by automatically selecting and sequencing
the needed learning components.
Components are running since client applica-
tion design, therefore they can automate a
significant part of component-coupling, in
the way that the application requires. Part of

the properties is browsable and therefore can
be visually modified by mouse right-click ac-
tions, without writing code or with minimal
programming effort.
Components benefit of abstractization using
interfaces, which standardize communication
and force components to respect minimal
communication rules that are generally ac-
cepted (like IComponent inherited by an user
control, IDataObject for drag and drop ac-
tion).

public class EvalExpresCtrl : Sys-
tem.Windows.Forms.UserControl, IDataObject
{
 public EvalExpresCtrl() {InitializeComponent();}

[Browsable(true),EditorBrowsable(EditorBrowsab
leState.Always),Category("Custom")]
 public string ExpressionLatex
 { get{ return latExpression;} set {latExpres-
sion=value;} }
 public string[] GetFormats(bool autoConvert)
 {
 if (autoConvert) { return new string[] { "Math",
"Latex","Bitmap", DataFormats.Text}; }
 else { return GetFormats(); }
 }
/* */
}

 By running in a virtual machine the compo-
nents are no longer platform-dependent; the
components adapt themselves to new ver-
sions, inconsistencies due to versioning thus
vanishing. Components can be easily reused
and rapidly integrated in new applications,
without the need of implementation details,
only by knowing the coupling interface. A
schematic structure of an educational com-
ponent is represented in the figure 1.

Fig. 1 Learning component structure

Learning component metadata

Learning component
Interface

Refers to

Content
Methods

Learning objects are self-contained, bearing
information about themselves, which allow

Revista Informatica Economică, nr. 3 (43)/2007 16

to be independently dragged in another loca-
tion where they are perfectly integrated. It is
because of this that every learning object en-
capsulates metadata; these metadata ensure:
resource identification (by title, version, re-
source type), indexing for fast searches
(keywords, author), exposing owned formats
or newly available formats using converters,
publishing accepted facilities etc.
From the point of view of educational strate-
gies, having a warehouse with such compo-
nents is not enough; using metadata and in-
terfaces it is very hard to depict all possible
semantic relationships because of the diver-
sity of educational processes.
Visual .NET environment offers at the mo-
ment, one of the most interesting models for
components aggregation and communication.
In addition, it facilitates objects storing
(ADO.NET), Web forms design (ASP.NET)

or distributed services requesting (Web Ser-
vices). .NET provides a dynamic publishing
and subscribing mechanism. The .NET
components are executables, therefore they
know (or they can find about) their interop-
erability characteristics at runtime in a de-
termined context; consequently they can pub-
lish their interface. A classic example is a
graphing component that can subscribe to a
varying number of external mathematical
functions or, in his turn, ask for data from a
table object.
3. Practical approach
A telling example can be an application for
mathematics training; it raises enough prob-
lems so that the definition, the integration
and learning object handling will be made
clear. A schematic interaction of objects used
in such case is represented in figure 2.

Fig. 2 Component interaction in figuring out the function concept

Learning object diversity is extremely
large; we just point out the most representa-
tive types of components, in order to easier
understand component assembling ways and
typical application structures.
A. Content – is the skeleton of an applica-
tion, offering generic support for an architec-
ture aiming a clear learning goal; usually
consists in a hierarchical/graph network for
logic navigation among inter-related knowl-
edge sets. It expresses the relationship be-
tween learning objects and the syllabus, the
course or other higher organizing structure in
which they are delivered.
B. Elementary objects usually placed as
leaves in the tree and having specialized edi-
tors; Text / RichText, Equation, Sound,
Graph, Image, Animation, Video are the
most used elementary objects.

C. Matching mechanism as an abstract class
managing logical associations between ob-
jects such as belonging to an object set or one
to one/multiple-choice quizzes.
D. EvalExpress – mathematical expression
evaluator providing support for runtime
compilation and work with parameterized
functions. The EvalExpress acts as a mini-
compiler, doing syntactic validations, mem-
ory allocation and dynamic evaluations, dur-
ing the whole execution of the client appli-
cation.

Fig. 3 EvalExpress – Data Grid interaction

DB
Function

Equation Text

EvalExpress

Table Chart Animation

Text to speech Audio

Revista Informatica Economică, nr. 3 (43)/2007 17

E. Converters and adapters aimed to adapt
the outputs to the coupling interfaces, usually
calling an overloaded cast operator. The di-
versity of elementary components requires
bringing them to a common format; even in
this case, problems remain to be solved, such
as: what conversion is preferred when faced
with multiple choices, which component ini-
tiates conversion at coupling time etc. For in-
stance, the output of Equation component
working in a visual form, can be a Latex
string, easily managed, compressed or re-
entered in a visual format for updating; often
we need conversions from/to formats ac-
cepted by a wide spread editors, like MS
Word. Text to speech could be another usual
converter.
Another common adapter is a database
adapter charged with data compression and
persistence of the objects. It offers a built-in
mechanism for storing the state of an activity
or students’ work using component serializa-
tion. Serialization writes at low-level the bi-
nary representation of the .NET component
content.
Another usual converter is an XML con-
verter; it offers a structured and text-based
format for storing and retrieving the state of
a component aggregation as a support for
cross platform portability.
F. Standalone Application – is an entity
able to be executed in a standalone play re-
gime on a specific platform. It includes also
sub-categories "script" and source applica-
tion, written in a programming language and
becoming platform dependent after compil-
ing and linking.
G. Function – covers a mathematically im-
portant data type, a continuous function rep-
resented by a method that takes a numeric
argument and returns a numeric value. In ad-
dition, other attributes of a function are im-

portant, such as the domain over which it is
defined. The function object offers the possi-
bility to handle mathematical functions by
analytical expression or by pointer to a li-
brary code; an expression evaluator control
allows syntactical validation of the analytical
form. Functions can be viewed using multi-
ple components, such as graphs, visualiza-
tions or tables.
The new approach is to automate the cou-
pling of components, building an adaptor
which forces the system to expose only a set
of safe or desired interfaces for a specific
context. By exploiting the metadata and par-
tial specification of the learning goalthat
must be enforced, it can automatically and
progressively build a centralized adaptor.
This adapter will mediate contextual interac-
tions among components by both performing
the specified behavior and simultaneously
managing possible deadlocks.

Bibliography
[1] Cleborne D. Maddux, D. LaMont John-
son, Jerry W. Willis, Educational Comput-
ing: Learning with Tomorrow's Technolo-
gies, Allyn & Bacon; 2001.
[2] Wiley, David, A. Connecting learning
objects to instructional design theory: A
definition, a metaphor, and a taxonomy, Utah
State University, Digital Learning Environ-
ments Research Group, 2002.
[3] Smeureanu, I., Reveiu, A., Dârdală, M.,
Educational Technologies Based on Software
Components, Informatica Economică, vol. X,
nr. 3, Editura INFOREC, Bucureşti, 2006.
[4] Tom Boyle, Design principles for author-
ing dynamic, reusable learning objects, in
Australian Journal of Educational Technol-
ogy, 2003, 19(1).
[5] math.hws.edu;portal.acm.org;ocw.mit.ed
u; www.epsilonlearning.com.

