
Informatica Economică, nr. 2 (42)/2007

122

Ajax Mistakes

Iulian ILIE-NEMEDI
Department of Informatics in Economy, Academy of Economic Studies, Bucharest

Ajax, shorthand for Asynchronous JavaScript and XML, is a web development tech-

nique for creating interactive web applications. The intent is to make web pages feel more re-
sponsive by exchanging small amounts of data with the server behind the scenes, so that the
entire web page does not have to be reloaded each time the user requests a change. This is
meant to increase the web page's interactivity, speed, and usability. However, there are sev-
eral common mistakes using it, like: using Axaj just for the sake of Ajax, moreover the back
button of the browser become unuseful, there might be a delay displaying enhanced GUI wid-
gets, offline content is not supported, concurrent page loading is dramatically slowed down,
sensitive information might be sent encrypted, cross-browser implementation is not one of de-
velopers primary concerns, concurrent access is not well supported, running the entire appli-
cation on the client side makes it slower, there is no support for user without a JavaScript en-
able browser, GUI might change unexpectedly, there are no URLs which may be referred and
indexed by users and search engines, pop-up blockers might kill opening windows, there are
a lot of asynchronous operations happening in the background which might be difficult to be
controlled, inventing new controls which are less intuitive than the classic ones, style and in-
ternationalization issues due to partial page rendering, the lack of data posted back from the
user, Web traffic cannot be reported for each section of a given site.
Keywords: Web Technologies, Web Frameworks, AJAX, Asynchronous HTTP Request, User-
friendly Interfaces

sing Ajax for the sake of Ajax
Sure Ajax is cool, and developers love
to play with cool technology, but Ajax

is a tool, not a toy. A lot of Ajax isn’t seri-
ously needed to improve usability but rather
experiments in what Ajax can do or trying to
fit Ajax somewhere where it isn’t needed.

Breaking the back button
The back button is a great feature of the stan-
dard web site user interface. Unfortunately,
the back button doesn’t mesh very well with
JavaScript. Keeping back button functional-
ity is one reason not to go with a pure
JavaScript web app. Keep in mind however
that good web design provides the user with
everything they would need to successfully
navigate your site, and never relies on web
browser controls.

Not giving immediate visual cues for click-
ing widgets
If something I’m clicking on is triggering
Ajax actions, you have to give me a visual
cue that something is going on. An example

of this is GMail loading button that is in the
top right. Whenever I do something in
GMail, a little red box in the top right indi-
cates that the page is loading, to make up for
the fact that Ajax doesn’t trigger the normal
web UI for new page loading.

Leaving offline people behind
As web applications push the boundaries fur-
ther and further, it becomes more and more
compelling to move all applications to the
web. The provisioning is better, the world-
wide access model is great, the maintenance
and configuration is really cool, and the user
interface learning curve is short. However,
with this new breed of Ajax applications,
people who have spotty internet connections
or people who just don’t want to switch to
the web need to be accommodated as well.
Just because technology ‘advances’ doesn’t
mean that people are ready and willing to go
with it. Web application design should at
least consider offline access. With GMail it’s
POP, Backpackit has SMS integration. In the
Enterprise, it’s web-services.

U

Informatica Economică, nr. 2 (42)/2007

123

Don’t make me wait
With Firefox tabs, I can manage various
waits at websites, and typically I only have to
wait for a page navigation. With AJAX apps
combined with poor network connec-
tivity/bandwidth/latency I can have a really
terrible time managing an interface, because
every time I do something I have to wait for
the server to return a response. However, re-
member that the ‘A’ in AJAX stands for
‘Asynchronous’, and the interaction can be
designed so that the user is not prevented
from continuing to work on the page while
the earlier request is processed.

Sending sensitive information in the clear
The security of AJAX applications is subject
to the same rules as any web application, ex-
cept that once you can talk asynchronously to
the server, you may tend to write code that is
very chatty in a potentially insecure way. All
traffic must be vetted to make sure security is
not compromised.

Assuming AJAX development is single
platform development
Ajax development is multi-platform devel-
opment. Ajax code will run on IE’s
JavaScript engine, Spidermonkey (Mozilla’s
JavaScript engine), Rhino (a JavaScript im-
plementation in Java, also from Mozilla), or
other minor engines that may grow into ma-
jor engines. So it’s not enough just to code to
JavaScript standards, there needs to be real-
world thorough testing as well. A major ob-
stacle in any serious JavaScript development
is IE’s buggy JS implementation, although
there are tools to help with IE JS develop-
ment.

Forgetting that multiple people might be
using the same application at the same
time
In the case of developing an Intranet type
web application, you have to remember that
you might have more than one person using
the application at once. If the data that is be-
ing displayed is dynamically stored in a da-

tabase, make sure it doesn’t go “stale” on
you.

Too much code makes the browser slow
Ajax introduces a way to make much more
interesting JavaScript applications, unfortu-
nately interesting often means more code
running. More code running means more
work for the browser, which means that for
some JavaScript intensive websites, espe-
cially inefficiently coded ones, you need to
have a powerful CPU to keep the functional-
ity zippy. The CPU problem has actually
been a limit on JavaScript functionality in the
past, and just because computers have gotten
faster doesn’t mean the problem has disap-
peared.

Not having a plan for those who do not en-
able or have JavaScript
According to the W3 schools browser usage
statistics, which if anything are skewed to-
wards advanced browsers, 11% of all visitors
don’t have JavaScript. So if your web appli-
cation is wholly dependent on JavaScript, it
would seem that you have potentially cut a
tenth of your audience.

Blinking and changing parts of the page
unexpectedly
The first A in Ajax stands for asynchronous.
The problem with asynchronous messages is
that they can be quite confusing when they
pop in unexpectedly. Asynchronous page
changes should only ever occur in narrowly
defined places and should be used judi-
ciously, flashing and blinking in messages in
areas I don’t want to concentrate on harkens
back to days of the html blink tag. “Yellow
Fade”, “One Second Spotlight” and other
similar techniques are used to indicate page
changes unobtrusively.

Not using links I can pass to friends or
bookmark
Another great feature of websites is that I can
pass URLs to other people and they can see
the same thing that I’m seeing. I can also
bookmark an index into my site navigation
and come back to it later. JavaScript, and

Informatica Economică, nr. 2 (42)/2007

124

thus Ajax applications, can cause huge prob-
lems for this model of use. Since the
JavaScript is dynamically generating the
page instead of the server, the URL is cut out
of the loop and can no longer be used as an
index into navigation. This is a very unfortu-
nate feature to lose; many Ajax webapps
thoughtfully include specially constructed
permalinks for this exact reason.

Blocking Spidering
Ajax applications that load large amounts of
text without a reload can cause a big problem
for search engines. This goes back to the
URL problem. If users can come in through
search engines, the text of the application
needs to be somewhat static so that the spi-
ders can read it.

Asynchronously performing batch opera-
tions
Sure with Ajax you can make edits to a lot of
form fields happen immediately, but that can
cause a lot of problems. For example if I
check off a lot of check boxes that are each
sent asynchronously to the server, I lose my
ability to keep track of the overall state of
checkbox changes and the flood of checkbox
change indications will be annoying and dis-
concerting.

Scrolling the page and making me lose my
place
Another problem with popping text into a
running page is that it can affect the page
scroll. I may be happily reading an article or
paging through a long list, and an asynchro-
nous JavaScript request will decide to cut out
a paragraph way above where I’m reading,
cutting my reading flow off. This is obvi-
ously annoying and it wastes my time trying
to figure out my place. But then again, that
would be a very stupid way to program a
page, with or without AJAX.

Inventing new UI conventions
A major mistake that is easy to make with
Ajax is: ‘click on this non obvious thing to
drive this other non obvious result’. Sure, us-
ers who use an application for a while may

learn that if you click and hold down the
mouse on this div that you can then drag it
and permanently move it to this other place,
but since that’s it’s not in the common user
experience, you increase the time and diffi-
culty of learning the application, which is a
major negative for any application. On the
plus side, intuitiveness is a function of learn-
ing, and AJAX is popularizing many new
conventions which will become intuitive as
time goes by. The net result will be greater
productivity once the industry gets over the
intuitiveness hump.

Character Sets
One big problem with using AJAX is the
lack of support for character sets. You should
always set the content character set on the
server-side as well as encoding any data sent
by JavaScript. Use ISO-8859-1 if you use
plain English, or UTF-8 if you use special
characters, like æ, ø and å (Danish special
characters) Note: it is usually a good idea to
go with utf-8 nowadays as it supports many
languages).

Changing state with links (GET requests)
The majority of Ajax applications tend to just
use the GET method when working with
AJAX. However, the W3C standards state
that GET should only be used for retrieving
data, and POST should only be used for set-
ting data. Although there might be no notice-
able difference to the end user, these stan-
dards should still be followed to avoid prob-
lems with robots or programs such as Google
Web Accelerator.

Not cascading local changes to other parts
of the page
Since Ajax/JavaScript gives you such spe-
cific control over page content, it’s easy to
get too focused on a single area of content
and miss the overall integrated picture. An
example of this is the Backpackit title. If you
change a Backpackit page title, they immedi-
ately replace the title, they even remember to
replace the title on the right, but they don’t
replace the head title tag with the new page

Informatica Economică, nr. 2 (42)/2007

125

title. With Ajax you have to think about the
whole picture even with localized changes.

Problem reporting
In a traditional server-side application, you
have visibility into every exception, you can
log all interesting events and benchmarks,
and you can even record and view (if you
wish) the actual HTML that the browser is
rendering. With client-side applications, you
may have no idea that something has gone
wrong if you don’t know how to code cor-
rectly and log exceptions from the remotely
called pages to your database.
Return on Investment
Sometimes AJAX can impressively improve
the usability of an application (a great exam-
ple is the star-rating feedback on Netflix), but
more often you see examples of expensive
rich-client applications that were no better
than the plain HTML versions.
Mimicing browser page navigation behavior
imperfectly
One example of this is blink list Ajax paging
mechanism on the front page. As you click to
see another page of links, Ajax fills in the
next page. Except that if you are used to a
browser experience, you probably expect to
go to the top of the page when you hit next
page, something JavaScript driven page
navigation doesn’t do. BlinkList actually an-
ticipates this and tries to counteract by ma-
nipulating your scrolling to scroll upwards
until you hit the top. Except this can be slow
and if you try scrolling down you will fight
the upwards scrolling JavaScript and it won’t
let you scroll down. But then again, that is

very stupid way to program a page, with or
without AJAX.

Another Tool
It seems everyone has forgotten that Ajax is
just another tool in the toolbox for Web De-
sign. You can use it or not and misuse it or
not. The old 80/20 rule always applies to ap-
plications (if you cover 80% of what all users
want/need then you have a viable app) and if
you lose 11% of your audience because they
don’t switch on their JavaScript then you
have to ask yourself if changing your app is
worth capturing that 11% or stick with 89%
that are currently using it and move on to
something else. Also web apps should take
advantage of all tricks to enable them to
function quickly and efficiently. If that
means using JavaScript for some part, Ajax
for another and ASP callbacks for a third, so
be it.

References
• Adams Cameron – Remote Scripting with
AJAX,O’Reilly, 2005
• Garrett Jesse James – Ajax: A New Ap-
proach to Web Applications,
http://www.adaptivepath.com/publications/es
says/archives/000385.php
• Gehtland Justin, Galbraith Ben, Almaer
Dion – Pragmatic Ajax, O’Reilly, 2006
• Mahemoff Michael – Ajax Design Patterns,
O’Reilly, 2006
• Perry Bruce – Ajax Hacks, O’Reilly, 2006
• Perry Bruce – Google Web Toolkit for Ajax,
O’Reilly, 2007

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

