
Informatica Economică, nr. 2 (42)/2007 
 

117

Translating programming languages for intermediate codes   
 

Ioan Daniel HUNYADI, Mircea MUŞAN 
Department of Informatics, University “Lucian Blaga” of Sibiu 

daniel.hunyadi@ulbsibiu.ro, mircea.musan@ulbsibiu.ro  
 

Many of the important data structures used in a compiler are intermediate representa-
tions of the program being compiled. Often these representations take the form of trees, with 
several node types, each of which has different attributes. Tree representations can be de-
scribed with grammars, just like programming languages. For each grammar rule, there is 
one constructor that belongs to the class for its left-hand-side symbol. I simply extend the ab-
stract class with a “concrete” class for each grammar rule. Each grammar rule has right-
hand-side components that must be represented in the data structures. 
Keywords: compiler, lexical analysis, abstract syntax, intermediate representation, abstract 
machine language 
 

Introduction 
Th

piler 
e semantic analyses phase of a com-

must translate abstract syntax into ab-
stract machine code. It can do this after type-
checking, or at the same time. 
An intermediate representation (IR) is a kind 
of abstract machine language that can ex-
press the target-machine operations without 
committing to too much machine-specific de-
tails. But it is also independent of the details 
of the source language. The front-end of the 

compiler does lexical analysis, parsing, se-
mantic analyses, and translation to interme-
diate representation. The back-end does op-
timization of the intermediate representation 
and translation to machine language. 
A portable compiler translates the source lan-
guage into IR ant then translates the IR into 
machine language, as illustrated in Fig.1. 
Now only N front ends and M back ends are 
required. Such an implementation task is 
more reasonable.  

 

Java 
 
ML 
     Spare  
Pascal         IR 
     MIPS 
C     
     Pentium
C++ 

 

 

 
Fig.1. Compilers for four languages and three target machines with an IR. 

 

Even when only one front-end and one back-
end are being built, a good IR cam modular-
ize the task, so that the front end is not com-
plicated with machine-specific details, and 
the back-end is not bothered with informa-
tion specific to one source language. Many 
different kinds of IR are used in compilers. 
For this compiler I have chosen simple ex-
pression syntax.  
 
2. Problem Formulation 
The intermediate representation tree lan-

guage is defined by the package Tree, con-
taining abstract classes Stm and Exp and 
their subclasses. 
A good intermediate representation has sev-
eral qualities: 
• It must be convenient for the semantic 
analyses phase to produce. 
• It must be convenient to translate into real 
machine language, for all the desired target 
machines. 
• Each construct must have a clear and sim-
ple meaning, so that optimizing transforma-

1 

mailto:daniel.hunyadi@ulbsibiu.ro
mailto:mircea.musan@ulbsibiu.ro


Informatica Economică, nr. 2 (42)/2007 
 

118 

tions that rewrite the intermediate representa-
tion can easily be specified and implemented. 
Individual pieces of abstract syntax can be 
complicated things, such as array subscripts, 
procedure calls, and so on. And individual 
“real machine” instructions can also have a 
complicated effect. Unfortunately, it is not 
always the case that complex pieces of the 
abstract syntax correspond exactly to the 
complex instructions that a machine can exe-
cute. 
 
3. Problem Solution 
Therefore, the intermediate representation 
should have individual components that de-
scribe only extremely simple things: a single 
fetch, store, add, move, or jump. Then any 
“chunky” piece of abstract syntax can be 
translated into just the right set of abstract 
machine instructions. 
 
package Tree; 
abstr
CONST(int value) 

act class Exp 

NAME(Label label) 
TEMP(Temp.Temp temp) 
BINOP(int binop, Exp left,Exp right) 
MEM(Exp exp) 
CALL(Exp func, ExpList args) 
ESEQ(Stm stm, Exp exp) 
 
abstract class Stm 
MOVE(Exp dst, Exp src) 
EXT Exp exp) (
JUMP(Exp exp,Temp.LabelList targets) 
CJUMP(int rel,Exp left,Exp right, Label 
iftrue,Label iffalse) 
SEQ(Stm left, Stm right) 
LABEL(Label label) 

 
Here is a description of the meaning of each 
tree operator. First, the expression (Exp), 
which stand for the computation of some 
value (possibly with side effects): 
CONST(i) – The integer constant i.  
NAME(n) – the symbolic constant n (corre-
sponding to an assembly language label) 
TEMP(t) – Temporary t. A temporary in the 
abstract machine is similar to a register in a 
real machine. However, the abstract machine 
has an infinite number of temporaries. 
BINOP(o,e1,e2) – The application of bi-
nary operator o to operands e1, e2. Subex-
pression e1 is evaluated before e2. The inte-
ger arithmetic operator are PLUS , MINUS, 

MUL, DIV; the integer bitwise logical opera-
tors are AND, OR, XOR; the integer logical 
shift operators are LSHIFT, RSHIFT; the in-
teger arithmetic right-shift is ARSHIFT.  
MEM(e) – The content of wordSize bytes of 
memory starting at address e (where word-
Size is defined in the Frame module). Note 
that when MEM is used as the left child of a 
MOVE, it means “store”, but anywhere else 
it means “fetch”. 
CALL(f,l) – A procedure call: the applica-
tion of function f to argument list l. The 
subexpression f is evaluated before the argu-
ments which are    evaluated left to right. 
ESEQ(s,e) – The statement s is evaluated 
for side effects, then e is evaluated for a re-
sult.   
The statements (stm) of the tree language 
perform side effects and control flow: 
MOVE(TEMP t,e) – Evaluate e and move it 
into temporary t. 
MOVE(MEM(e1),e2) – Evaluate e1, yielding 
address a. The evaluate e2, and store the re-
sult into wordSize bytes of memory starting 
at a. 
EXP(e) – Evaluate e and discard the results. 
JUMP(e,labs) – Transfer control (jump) to 
address e. The destination e may be a literal 
label, as in NAME (lab), or it may be an ad-
dress calculated by any other kind of expres-
sion. For example, a C-language 
switch(i) statement may be implemented 
by doing arithmetic on i. The list of labels 
labs specifies all the possible location that 
the expression e can evaluate to; this is nec-
essary for dataflow analysis later. 
CJUMP(o,e1,e2,t,f) – Evaluate e1, e2 in that 
order, yielding values a, b. Then compare a, 
b using the relational operator o. If the result 
is true, jump to t; otherwise jump to f. 
SEQ(s1,s2) – The statement s1 followed by 
s2. 
LABEL(n) – Define the constant value of 
name n to be the current machine code ad-
dress. This is like a label definitions in as-
sembly language. The value NAME(n) may 
be the target of jumps, calls, etc. 
It is almost possible to give a formal seman-
tic to the Tree language. However, there is 
no provision in this language for procedure 



Informatica Economică, nr. 2 (42)/2007 
 

119

and function definitions – we can specify 
only the body of each function. The proce-
dure entry and exit sequences will be added 
later as special “glue” that is different for 
each target machine.  
Translation of abstract syntax expressions 
into intermediate tree is reasonably straight-
forward; but there are many cases to handle. I 
will cover the translation of various language 
construct, including many from MiniJava.  
The MiniJava grammar has clearly distin-
guished statements and expression. In lan-
guages such as C, the distinction is blurred. 
For example, an assignment in C can be used 
as an expression. When translating such lan-
guages, we will have to ask the following 
question. What should the representation of 
an abstract syntax expression be in Tree 
language? At first it seems obvious that it 
should be Tree.Exp. This is true only for 
certain kind of expressions, the ones that 
compute a value. Expressions that return no 
value are more naturally represented by 
Tree.Stm. And expressions with boolean 
values, such as a>b, might best be repre-
sented as an conditional jump – a combina-
tion of Tree.Stm and a pair of destinations 
represented by Temp.Labels. 
It is better instead to ask, “how might the ex-
pression be used?” Then I can make the right 
kind of methods for an object-oriented inter-
face to expressions. Both for MiniJava and 
other languages, I end up with Trans-
late.Exp, not the same class as 
Tree.Exp, having three methods: 
 
package Translate; 
public abstract class Exp{ 
  abstract Tree.Exp unEx(); 
abstract Tree.Stm unNx(); 
     abstract Tree.Stm unCx  
      (Temp.Label t, Temp.Label f); 
  } 
 

Ex – stands for an “expression”, represented 
as a Tree.Exp. 
Nx – stands for “no result”, represented as a 
Tree statement. 
Cx – stands for “conditional”, represented as 
a function from label-pair to statement.  
 

For example, the MiniJava statement  
 
if (a<b && c<d) 
{ //true block } 
else  
{ //false block } 
 
might translate to a Translate.Exp whose 
unCx method is roughly like 
 
Tree.Stm unCx(Label t, Label f) 
{ Label z=new Label(); 
  return new SEQ(new 
    CJUMP(CJUMP.LT,a,b,z,f), new 
    SEQ(new LABEL(z),new 
    CJUMP(CJUMP.LT,c,d,t,f))); 
} 
 
The abstract class Translate.Exp can be 
instantiated by several subclasses: Ex for an 
ordinary expression that yields a single value, 
Nx for an expression that yields no value, 
and Cx for a “conditional” expression that 
jumps to either t or f:   
 
class Ex extends Exp{                                        
     Tree.Exp exp ; 
  Ex(Tree.Exp e) {exp=e;} 
  Tree.Exp unEx() {return exp;} 
  Tree.Stm unNx() {...?...} 
  Tree.Stm unCx( 
        Label t, Label f) {...?...} 
} 
class Nx extends Exp { 
  Tree.Stm stm; 
  Nx(Tree.Stm s) {stm=s;}       
  Tree.Exp unEx() {...?...} 
  Tree.Stm unNx() {return stm;} 
  Tree.Stm unCx( 
        Label t, Label f) {...?...} 
} 
abstract class Cx extends Exp{ 
Tree.Exp unEx(){ 
   Temp r=new Temp(); 
   Label t=new Label(); 
   Label f=new Label(); 
} 
abstract Tree.Stm unCx(Label t, 
   Label f); 
Tree.Stm unNx(){...} 
} 

 
Each kind of Translate.Exp class must 
have similar conversion methods. The unCx 
method is still abstract. But the unEx and 
unNx methods can still be implemented in 
terms of the unCx method.  
 
 



Informatica Economică, nr. 2 (42)/2007 
 

120 

3.1. Structured l-values 
An l-value is the result of an expression that 
can occur on the left of an assignment state-
ment. An r-value is one that can only appear 
on the right of an assignment. That is, an l-
value denotes a location that can be assigned 
to, and an r-value does not. Of course, an l-
value can occur on the right of an assignment 
statement. In this case the contents of the lo-
cation are implicitly taken. 
All the variables and l-values in MiniJava are 
scalar, since it has only one component. Even 
a MiniJava array or object variable is really a 
pointer. 
In C or Pascal there are structured l-value – 
structs in C, records in Pascal - that are not 
scalar. In a C compiler, the access type 
would require information about the size of 
the variables. Then, the MEM operator of the 
TREE intermediate language would need to 
be extends with a notation of size: 
 
package Tree; 
abstract class Exp 
 MEM(Exp exp, int size) 

 
The translation of a local variable into an IR 
tree would look like 
 
MEM(+(TEMP fp, CONST kn),S) 

 
where the S indicates the size of the object to 
be fetched or stored (depending on whether 
this tree appears on the left or right of a 
MOVE).  
Leaving out the size on MEM nodes makes 
the MiniJava compiler easier to implement, 
but limits the generality of its intermediate 
representation. 
3.2. Subscripting and field selection 
To select field f of a record l-value a (to cal-
culate a.f), simply add the constant field off-
set of f to the address a.   
An array variable a is an l-value; so is an ar-
ray subscript expression a[i], even if i is not 
an l-value. To calculate the l-value a[i] from 
a, we do arithmetic on the address of a. Thus, 
in a Pascal compiler, the translation of an l-
value (particularly a structured l-value) 
should not be something like in Fig. 2, but 

should instead be the Tree expression repre-
senting the base address of the array (Fig. 3). 

 

 
Fig.2. 

 
Fig.3. 

 

In the MiniJava Language, there are no struc-
tured, or “large” l-value. This is because all 
object and array values are really pointers to 
object and array structures. The “base ad-
dress” of the array is really the contents of a 
pointer variable, so MEM is required to fetch 
this base address. 
Thus, if a is a memory-resident array vari-
able represented as MEM(e), then the con-
tents of address e will be a one-word pointer 
value p. The contents of addresses p, p+W, 
p+2W,…, will be the elements of the array. 
Thus, a[i] is just l-values and MEM nodes, 
like in Fig. 4. 

 

 
MEM{+(MEM(e), 

BINOP(MUL,i,CONST(W))) 
Fig.4. 

 

Technically, an l-value should be represented 
as an address (without the top MEM node in 
the diagram above). Converting an l-value to 
an r-value (when it is used an expression) 
means fetching from that address. Assigning 
to an l-value means storing to that address.  
We are attaching the MEM node to the l-
value before knowing whether it is to be 
fetched or stored. This works only because in 
the Tree intermediate representation, MEM 



Informatica Economică, nr. 2 (42)/2007 
 

121

means both store (when used as the left child 
of a MOVE) and fetch (when used else-
where). 
3.3 Conditionals 
The result of a comparison operator will be a 
Cx expression: a statement s that will jump 
to any true-destination and false-destination 
you specify.  
Making “simple” Cx expression from com-
parison operators is easy with the CJUMP op-
erator. However, the whole point of the Cx 
representation is that conditional expressions 
can be combined easily with the MiniJava 
operator &&. Therefore, an expression such 
as x<5 will be translated as Cx(s1), where  

),),5(,,(),(1 ftCONSTxLTCJUMPfts =  
for any labels t and f.  
To do this, I extend the Cx class to make a 
subclass RelCx that has private fields to 
hold the left and right expressions (in this 
case x and 5) and the comparison operator (in 
this case Tree.CJUMP.LT). Then we over-
ride the unCx method to generate the 
CJUMP from these data. It is not necessary to 
make unCx and unNx methods, since these 
will be inherited from the parent Cx class.  
The most straightforward thing to do with an 
if expression 

if e1 then e2 else e3 
is to treat e1 as a Cx expression, and e2 and 
e3 as Ex expression. That is, use the unCx 
methos of e1 and the unEx of e2 and e3. 
Make two labels t and f to which the condi-
tional will branch. Allocate a temporary r, 
and after label t, move e2 to r. After label f, 
move e3 to r. Both branches should finish by 
jumping to a newly created “join” label. 
This will produce perfectly correct result. 
However, the translated code may not be 
very efficient at all. If e2 and e3 are both 
“statements” (expressions that return no 
value), then their representation is likely to 
be Nx, not Ex. Applying unEx to them will 
work – a coercion will automatically be ap-
plied – but it might be better to recognize this 
case specially. 
The translation of an if requires a new sub-
class of Exp: 
class IfThenElseExp extends Exp{ 

  Exp cond,a,b; 
  Label t=new Label(); 
  Label f=new Label(); 
  Label join=new Label(); 
  IfThenElseExp(Exp cc, Exp aa,  
           Exp bb) 
  { 
     cond=cc; a=aa;  b=bb; 
  } 
  Tree.Stm unCx(Label tt, Label ff) 
  {…} 
  Tree.Exp unEx(){…} 
  Tree.Stm unNx(){…}  
} 

The labels t and f indicate the beginning of 
the then-clause and else-clause, respectively. 
The labels tt and ff are quite different: these 
are the places to which conditions inside 
then-clause (or else-clause) must jump, de-
pending on the truth of those subexpressions. 
 
4. Conclusion 
To simplify the implementation of the trans-
lator, we may do without the Ex, Nx, Cx 
constructors. The entire translation can be 
done with ordinary value expression. This 
means that there is only one Exp class. This 
class contains one field of type Tree.Exp 
and only an unEx() method. Instead of 
Nx(s), use Ex(EXEQ(s.CONST 0)). 
For conditionals, instead of a Cx, use an ex-
pression that just evaluates to 1 or 0. 
     The intermediate representation trees pro-
duced from this kind of naïve translation will 
be bulkier and slower than a “fancy” transla-
tion. But they will work correctly, and in 
principle a fancy back-end optimizer might 
be able to clean up the clumsiness. In any 
case, a clumsy but correct translator is better 
than a fancy one that doesn’t work.  
 
References: 
[CHAL95] Chambers C., Leavens G.T., Typechecking 
and modules for multimethods, ACM Trans. on Pro-
gramming Languages and Systems 17(6), 1995, 
pp.805-843 
[CHET94] Chen W., Turau B., Efficient dynamic 
look-up strategy for multi-methods, European Confer-
ence an Object Oriented Programming (ECOOP ‘94), 
1994 
[LIMA97] Lipton R.J., Martino P.J., On the complex-
ity of a set-union problem, Proc. 38th Annual Sympo-
sium on Foundations of Computer Science, IEEE 
Computer Society Press 110-115, 1997 
[STRO97] Stroustrup P.B., Programming Language, 
Third ed. Addison-Wesley , Reading, MA, 1997 


