
Informatica Economică, nr. 2 (42)/2007

111

Beyond the Object

Cristina COCULESCU
Romanian-American University, Bucharest

Object orientation (OO) is regained not only in all components of integrate develop-

ment media but it remarks in the rest of software world from operating system to last applica-
tion domain – of course, with different intensity and success. A clear prove of OO application
in all situations is the development of a wide range of industrial applications.
OO technology allows drawing of relation between the geometry, topology and dimensions of
data on a class hierarchy; thus, the observation of the amount of data gained by research in
many scientific domains is facilitated through class libraries both for graphic primitives and
for events examination. In conformity to all waiting, OO asserts in every distributive system,
there are very important the applications for making open systems customer-server and dis-
tributed applications in Java. Finally OO application in robot’s programming and modeling
needn’t be omitted. However, far to be panacea, OO has also shades which will be re-
searched so on.
Keywords: object orientation, adaptability, re-usability component wares, mega-
programming, generative programming.

Limitations
H

“city”
owever OO has gained the right of
, some aspects of OO show a certain

inconsequence of thinking – that prove the
youth of paradigm. One of the land problems
is given by a famous polemic older more
than ten years: “is there square a class of rec-
tangles?” The answer, apparently clear, is
yes. Indeed, in what concerns the classifica-
tion, like an expression – and likely – as tax-
onomy, the problem is clearly solved on all
the chain of scientific tradition, from Aris-
totle to Linn : specific difference adds pro-
prieties to nearest type: on other side,
mathematically, inclusion into a
(sub)manifold is defined through a property
set (additional, seen like restrictions). The
content decides the sphere: every class is de-
fined through conditions or rules; an object is
a member of a class if it satisfies all its con-
ditions.
This intentional approach, logically normal
and historically established, is fit in theoretic
studies where there is searched the proving of
some collective properties (of the class it-
self). Contrariwise, the establishment of the
fact that an object is part of a class is difficult
not only in informatics but also in mathemat-
ics (a famous example : the property of a
number to be prime).

Real world classes – both of problem and in-
formatics are explicitly definite through
enumeration of their members, that is, the
definition of the sphere is made by extension.
At each level of classification, classes gave
attributes and behavior in conformity with
shown rules but now they don’t define the
extension of the class and they affirm proper-
ties of members. Thus, squares are not de-
fined through their enumeration though they
are a sub-manifold of rectangles, in a graphic
editing program, in the class Figure_Square
are included objects that the user draw then
explicitly like squares, not “mathematical
squares” but “graphic objects whose form is
constrained to be a square”. Now the sur-
prises appear: square has less attributes then
rectangles and even with other names: edge
instead length and breadth; formal attributes
are no more independent; separate update is
dangerous (Modif_X is a good operation for
rectangle but not for square too).
However both aspects are clear, in OO pre-
vails extensional approach that intentional is
generally avoided – probably also under psy-
chological pressure of implementation
through languages (especially that, actually,
prevails the simplicity “type = class” where
the appertaining to a class is explicitly estab-
lished either at the declaration of a variable

1

Informatica Economică, nr. 2 (42)/2007

112

or at the making of an object. There is true
that all the characteristics of the class (attrib-
utes and behavior) are defined intentionally,
by rules but the class is not established
through the checking of these rules but first
reversely : the rules must be defined so that
to be compatible to the classes.
The problem is that objects hardly change the
class (In Smalltalk an explicit operation is
necessary but in C++ is impossible). For im-
plementation, it would be terrible non-
efficient to have an intentional definition, re-
lied on rules, especially in the case of some
wide classes because these rules would be
checked after every operation which affect an
object.
Additionally, an operation in super-class can
change ”involuntary” the subclass of a mem-
ber. Therefore, generally, a class must be
closed relative to its operation and those of
its ancestors (if Rectangle has an operation
Modif X, Square needn’t be a subclass but a
twin of the rectangle, derived, for example,
from Parallelogram). Otherwise, classes must
be defined through augmentation (addition of
new data and behavior structures) but not re-
striction. Hence, there is the trouble (as not to
say it impasse).
After this description that deserves to point to
one of the barriers came from deep principles
of paradigm, we follow to have an overview
to some practical inconveniences:
a) The mind complexity of big programs in-
creases (heredity and polymorphism go to
dependencies hard to follow; thus immediate
taking and viewing of changes, characteristic
of exploring programming, asks navigation
through difficult graphs); the trouble goes
bigger in the case of multiple heritage.
b) The acceptability is still poor (a whole
generation of programmers has remained
tributary to procedure paradigm).
c) Complexity of software development, es-
pecially in distributive work out (partially
grace of the paradigm itself or of the first to
inconveniences);
d) In simple operations, the code is not effi-
cient (the burden of redundant complexity);
e) OO fell in re-usability (to this key prob-
lem there us given the paragraphs as follow).

2. Component wares adaptability and re-
usability
For more then 30 years there is heard in dif-
ferent kinds about programming crisis (soft-
ware crisis): the pessimists give it apocalyp-
tic colors, the optimists consider it as defeat
from the paradigm in vogue. However, all
these, feel it and – in relation to other indus-
trial domains – is full of paradoxes. Here are
only three examples:
1) It is intense though it is truncated only to
development phase (opposite of other indus-
tries there needn’t the problem of product
multiplication).
2) However, paradigms change very often
(structural programming is only a quarter of a
century old) but all programs almost the
same (lack of work division is a clear symp-
tom of industrial immaturity);
3) Geometric increase of available resources,
far to cancel it gives it shape in at least two
aspects: additional megahertz don’t decrease
clearly moon-men and additional gigabytes
are filled immediately. Event the conclusion
is driven by the paradox; the more the crisis
becomes stronger, the better it becomes
acuter!
For clarification, there is utile a rapport to
other industries: there are large-usage prod-
ucts (TV-set, text-editors) where wide pro-
duction allow the development of a small
number of variants with functional flexibility
and also products (almost) unique (bridge,
driving system for a complex technological
system), where the variance is hardly imag-
ined because the cost of non-used functional-
ity is too expensive.
Between these extremes there are many do-
mains (for example car industry or software
for InInd) where, in slang OO, there would
speak about a class “auto” with subclasses
like “limousine” , “kombi” , “cabrio” . Con-
trariwise, OO modeling of engine or heating
is difficult because either the tree of class hi-
erarchy would be too wide or the numerous
relations between classes would go to a com-
plex and hard project activity. Here there be-
comes true that OO is neither a sufficient
base for adaptability (for example the chang-
ing of an engine with benzene without lead,

Informatica Economică, nr. 2 (42)/2007

113

respectively of a program-product for local-
ization) nor for re-usability (if there is con-
solidated a new necessity of use), usually it
relies on the kind of development and on the
experience achieved at existing similar prod-
ucts: in time it would have to appear ele-
ments that can be used to many products). In
fact, the problem is very old (from bricks and
slabs to containers and even to architectural
styles, the efforts for modularization traverse
all civilization’s history) and has penetrated
many years ago the technology of informa-
tion both through electronic components of
equipments and through modular program-
ming rules. To conjectures deeps it: the
spread of OO systems generally distributed
and globalization of enterprises, which asks
more and more distributed applications on
communication networks. More, InInd sys-
tems become complex and complex clearly
mirroring the complexity of real world but
the world remain intelligible, being com-
posed of components that can be found (for
example operators, products, equipments); of
course, conceptual description of complex in-
formatics systems as a projection of modeled
world, is often modular but this vision sel-
dom overcome the concept level, the system
remaining monolithic as it is - with very
strong links between „models” – because it
isn’t clearly joined to real world but by
means of “someone” (man or machine) who
use its information to control it. Therefore
modularity must be born to implementation –
through the technology of distributed objects.
But re-analyzing the problem with available
instruments, the conclusions can be formu-
lated in terms more strong; though the eves
of the time of half-made software can be de-
layed, there is plenty of inconveniences, most
of OOP languages – including C++ haven’t
means of packing and efficient distribution of
objects as binary; the customs and practice
needed for development of components, is
clearly unlike those necessary to use they, in
fact, exaggerating a little, OO breaks the
principles of modular programming (a pro-
gram developed like a hierarchy of classes,
has a maximum coupler).
Because standard elements are few and rigid,

for solving the problem, there are suggested
three ways to fight, shown in respect to the
distance to OO paradigm (already) “conven-
tional”, the development of flexible models
(shown in component wares, described as
follow), development of half-finished materi-
als (as abstract classes used in frame technol-
ogy) and – last solution? – renewing the
paradigm (passing to generative program-
ming).
Availability of computers is precarious and
there is (still) hope – if they will be enough -
to be more efficient search, checking and un-
derstanding of a component then it concep-
tion. In fact, what is a component? A class or
a group of classes with a tight coupler but in
concepts an atomic piece good to be used
again, that is, their components are sold indi-
vidually and must impose trust, its subcom-
ponents (for example other objects) always
co-operate for the achievement of a function.
An important role in the insurance of the
lustiness of systems with distributed objects
relayed on components has tolerant commu-
nication between objects: a system is consid-
ered as tolerant if it accomplishes its func-
tions even when a component is changed or
deleted. A wide treatment through InInd sys-
tems, of passing from monolithic to compo-
nent-based systems – including showing of
demands, system projection, facility of “me-
diation” of the action between components
and the description of the class of system
components – is presented in [Coutts and
Edwards, 1998].

3. Megaprogramming frame technology
An approach right more flexible of this prob-
lem which offer partial solutions too, but of
bigger efficiency, is based on frame technol-
ogy, where re-usability points not only the
code but also the projection. An OO frame
(framework) defines a feature of classes and
a model of interaction for the objects which
co-operates, being made a generic architec-
ture; the places where there must be added
additional functionality are predefined.
Therefore, unlike usual applications, the
mainframe and also a big part of needed
functionality pre-exists, every time there

Informatica Economică, nr. 2 (42)/2007

114

must be added only proper functions of ac-
tual application. The frame calls additional
functionality, developed by user. Of course,
as a frame is used to more and more applica-
tions, as the number of components which
must be developed decreases, so that com-
plex applications “can be put out the shelf”.
Entities are defined functionally, relations
between they, abstract, grace of insertion of
many abstraction levels in system specifica-
tion, the complexity of each level can be
managed, thus it increases not only the qual-
ity of system arrangement but also re-
usability. Through aggregation of frame
components, the craft of traditional pro-
gramming supports a movement to mega-
programming – direction so more marked in
distributed systems. In consequence, the
frames can cover a wide range both as granu-
larity of domain (support frames, domain,
application ones) and like power of re-
usability (white-box, glass-box, black-box ,
of course, the more transparent is the frame,
the better it is re-usable.
However, how do we operate, for example
with an “abstract resource”? A resource is
something which can be got and, after that,
released (file handle, memory area, counter).
Extending the idea; every object is a resource
that is got by constructor and is released by
destructor (resources are packed in objects).
An abstract resource is something that isn’t
an object itself but the status of another ob-
ject. In this point of view, abstraction force
of used language has an important function.
Difficult problems appear – almost always –
in practice. Difficulties and also their passing
with a methodic development of frames are
synthesized related to: big development
costs, limited experience in the domain of
object technology, the long time for habit
with pre-existing frames, lack of proper in-
struments of frame description and use. Pro-
posed solution: a main model, on three sub-
domains a) development b) documentation c)
application.
In first stage, domain theory (here, knowl-
edge regarding the kind for solving the prob-
lems) are implemented as generic entity, re-
usable (main problem: the splitting of func-

tions in general valuable and specific for ap-
plications).
Both development and documentation are re-
alized by iterations (while there are added
new properties, it goes from established
zones to flexible ones of the frame). A meta-
model of the frame is the same time base for
documentation and application process. The
“networks” (general, without implementation
details) for development of applications, are
part of documentation (and they are filled by
the users of the frame with specific informa-
tion about classes, methods, parameters etc.).
Through software quality instruments (with
incremental code generator, for example) the
application is divided in two phases: the crea-
tion of an implicit application and its gradual
specialization.

4. Generative programming
Unfortunately, not only conventional para-
digms of software development but also,
right now even OO technology help insuffi-
ciently the adaptability and re-usability.
Hence there are new searches. The motiva-
tion, main concepts and principles of one of
most promising “trans-object orientations”,
generative programming introduces itself in
abstract as follow with [Eisenecker and
Cazanecki, 1997].
Between the problems not solved with com-
ponents and frames there are : lack of some
procedures of development, abstract classes
implements arbitrary some features, reducing
the adaptability, abstract classes with differ-
ent functionalities are hardly used together in
the same application because most of appli-
cations don’t use all (intentioned) facilities of
abstract classes, much of their functionality
remain useless and redundant in code: flexi-
bility is often got with the price of increasing
of the time of operation, need of detailed
knowledge regarding internal structure (hid-
ing of information become barrier). Addi-
tionally, there are also big maintenance prob-
lems that appear. Sincerely, if there is pre-
viewed a variable feature , its “factorization”
in an abstract class is easy; but, if several fea-
tures are kept, the number of ‘artificial”
classes, without a link to basic concepts of

Informatica Economică, nr. 2 (42)/2007

115

application domain increases – and the same
time with it, the coupler given to heritages
and associations and also the complexity of
projection.
There is true that adaptability and re-usability
of the amount of classes increase but, espe-
cially, isolated classes can’t be used. In con-
sequence, it is preferred that the variability
be got by configurability, that is, instead to
derive new classes, a class is configured with
classes (with minimum dependence) having
role of “configuration parameters”. In this
regard, generic units of real-time program-
ming languages give an important potential,
without purpose even a systematic identity of
definition and configuration dimensions of
component. Here comes the new approach.A
main concept of generative programming as-
pects is projection space (design space).
Whose dimensions concern characteristics
recognized as relevant for building a compo-
nent. Examples of dimensions: interfaces,
implementation, synchronization, structure,
error detection. A dimension is relied on its
aspects like an attribute to its values (for ex-
ample the characteristic “type of data” can
receive as types: integer, real with mobile
coma, complex). Expressions give basic na-
ture and functions of one component. Among
the numerous problem put by projection
space here are just some: Are the dimensions
complex, that is, decomposable in other di-
mensions or elementary? Are the expressions
dichotomist, discrete, continue, (in)finite, or-
dered and so on? Is the space extensible
and/or changeable?
In this context, the objects of generative pro-
gramming are formulated like this: increasing
of adaptability and re-usability; improving of
the control of complexity; availability of a
big number variants; increasing the effi-
ciency (as memory and time).
Therefore, the five principles of generative
programming are:

 founding and splitting of relevant do-
mains of projection space (separation of con-
cern, how many they are and how they are
established?);

 opening of implementation: every com-
ponent allows the access to its implementa-

tion strategies as expressions of dimensions;
 the spreading of expressions: information

concerning expression of a dimension of a
component can be sent further to its subcom-
ponents, neighbor or over-ordered (for avoid
redundancy and global optimization relative
to the domain);

 illation of complexity through configura-
tion rules: a component has external and in-
ternal expression (these can be deduced gen-
erally through configuration rules that estab-
lishes the associations of non-valid expres-
sions);

 avoiding of useless costs (zero-overhead
rule) final product haven’t redundant compo-
nents or functions (for example, it resigns
dynamic binding if that static is enough).
Of course, such approaches must be accom-
panied also to a cluster of (formal) methods
which help them; for example, a level of in-
ter-connection of components is purposed in
[Hirschfeld and Schonefeld, 1997]. Finally,
to this paradigm (ones already grant it this ti-
tle) there are associated a lot of techniques
that are still in syncretism (Intentional Pro-
gramming, Aspect-Oriented Programming,
Subject-Oriented Programming). It is to view
which of them will pass the stage of promis-
ing.

References
[1]. BĂRBAT, B., FILIP, F. G., Informatică
industrială. Ingineria programării în timp
real, Vol. I, Editura Tehnică, Bucureşti,
1997.
[2]. HELLENDOORN, H., DRIANKOV, D.,
Fuzzy Model Identification, Springer-Verlag,
Berlin, 1997.
[3]. HERMANS, B., Intelligent Software
Agent son the Internet: an inventory of
currently offered functionality in the
information society& a prediction of (near-)
future developments, Tilburg University,
Tilburg, 1996.
[4]. HUNT, J., Smalltalk and Object-
Orientation, Springer-Verlag, Berlin, 1997.
[5]. MC ELLIGOTT, M., SORENSEN, H., A
Connectionist Approach to Personal
Information Filtering, University College,
Cork, 1995.

Informatica Economică, nr. 2 (42)/2007

116

[6]. METAKIDES, G., NERODE, A., Prin-
cipii de logică şi programare logică, Editura
Tehnică, Bucureşti, 1998.
[7]. NIELSEN, J., Usability Engineering,
Academic Press, New York, 1992.
[8]. SHIN, Y. C., VISHNUPAD, P., Neuro-
fuzzy control of complex manufacturing
processes, International Journal of Produc-
tion and Research, v. 34 no. 12, S.U.A., 1996
[9]. SMITH, L., An Introduction to Neural
Network, 1998

[10]. STONE, P., VELOSO, M., Multiagent
Systems: A Survey from a Machine Learning
Perspective, Carnegie Mellon University,
Pittsburgh, 1997.
[11]. TURNER, R., Logics for artificial
intelligence, Ellis Horwood, Chichester,
1984.
[12]. WOOLDRIDGE, M., JENNINGS, N.
R., Intelligent Agents: Theory and Practice,
Knowledge Engineering Review, 1995.

