
44 Informatica Economică vol. 30, no. 1/2025

Smart Contracts Business Model Canvas
Silviu OJOG, Alina-Andrea MIRON

Bucharest University of Economic Studies, Romania
silviu.ojog@csie.ase.ro, alina.miron@mk.ase.ro

Smart Contracts are the central piece of Ethereum and other compatible blockchains. Their
role is to build trusted functionality that unknown parties can interact with. However, their
value proposition can be undermined by different security exploits. In many cases,
vulnerabilities are overlooked not due to neglect but due to a systematic approach in the review
process. This paper aims to appeal to existing frameworks for understanding the business
context and provide standardized thinking on auditing smart contracts. The power of a
framework lies in the fact that it ensures that auditors do not overlook critical aspects of their
vulnerability.
Keywords: Blockchain, Smart Contract, Business Model Canvas, Audit, Ethereum, Exploit,
Vulnerability, Solidity, Security
DOI: 10.24818/issn14531305/29.1.2025.04

Introduction
The first blockchain, Bitcoin, was created

by Satoshi Nakamoto in 2009 to store
financial transactions [1]. It was built around
the idea of a decentralized, distributed, and
shared digital ledger. Ethereum, launched in
2015, is considered the second generation of
blockchain [2]. Innovation was brought by the
creation of a platform based on smart
contracts. Its innovation consisted of creating
a platform based on smart contracts, which are
software with customizable functionalities
[3].
Hence, blockchain promises, such as
immutability, transparency, decentralization,
and fault tolerance, can be applied to any
custom logic in smart contracts. Contracts
become even more decisive as any error at the
implementation level can lead to dangerous
consequences, often meaning the loss of
available funds. As with any maturing
industry, blockchain must create standards
around understanding its vulnerabilities,
creating best practices, and enforcing them
[4].
To be more easily understood, patterns [5]
other standards need to be designed by
drawing on existing mental models of those
involved in the industry, as well as other
frameworks with similar impacts from
different sectors.
Since smart contracts can hold data and
significant amounts of money, not only can

they attract many types of attackers, but they
could be considered a business of their own.
This paper aims to analyze the technical
vulnerabilities of smart contracts using
business frameworks such as Business Model
Canvas [6] or the Business Model Navigator
[7].

2. The Smart Contract mindset
Smart contracts do require a shift in security
mindset. Unlike traditional pieces of software,
smart contracts are immutable, their code is
publicly accessible and interactable, and they
can be used to deposit money. A subtle
difference is that the smart contract code itself
is immutable, while the data the smart contract
holds can be changed. Updates on the code are
not performed in the traditional manner. The
only possible way to upgrade a smart contract
logic is to deploy a new smart contract and
permanently stop access to the initial contract.
Holding large amounts of money could
potentially attract bad actors as the reward to
effort ratio is significantly higher than in other
areas. In case an attacker seizes the funds f of
a smart contract, he can monetize more easily
than in a traditional data breach [8].
Smart contracts were invented with the
purpose of extending Blockchain use cases
beyond financial transactions. Smart contracts
were designed to be Turing complete as
opposed to Bitcoin scripting language.
However, the Turing completeness in smart

1

mailto:@csie.ase.ro
mailto:alina.miron@mk.ase.ro

Informatica Economică vol. 30, no. 1/2025 45

contracts means they can run programming
loops within a limited number of steps. The
purpose of this limitation is to counter
malicious code with blocking or infinite loop.
Smart contracts were designed to charge for
every computation performed using a concept
named gas. A gas limit is imposed on every
smart contract transaction. Over the years, gas
optimization has become an important subject
[9]. Solutions, such as such as second-layer
blockchains, have been developed in order to
mitigate the spent-on transactions.
A more pragmatic approach is needed when
dealing with smart contracts instead of an
iterative start-up-driven mindset. Before the
actual deployment, it is considered good
practice to have two external entities audit the
smart contract [10].

3. Types of vulnerabilities
Blockchain and namely Bitcoin, was created,
combining different existing computer
science theories, algorithms and data
structures. Smart contracts are a result of
second-generation innovation on Blockchain.
They bring the programming logic into
Blockchain. They are pieces of software
meant to interact with transactions and other
smart contracts and save data in a Blockchain
state.
As a result, Blockchain vulnerabilities can be
categorized into three buckets: general
programming vulnerabilities, Blockchain,
specific vulnerabilities and platform, specific
vulnerabilities.

Fig. 1. Vulnerability layers in smart contracts

Figure 1 depicts the three categories of
vulnerabilities in small contracts. When
integrating Ethereum with other blockchains
or L2 solutions, another type of vulnerabilities
can emerge.
The concept of access control is not particular
to Blockchain or smart contract platforms. It
may be used to restrict certain smart contract

functionality to particular addresses.
Depending on the contract logic, several roles
may emerge for those addresses, such as
contract owner, deployer, recovery address,
oracles, or regular user. Vulnerabilities may
arise from assigning incorrect roles,
transferring privileges or validating privileges
on incorrect parameters.

46 Informatica Economică vol. 30, no. 1/2025

Another concept highly used throughout
programming, but has a particular meaning in
blockchain is that of timestamping. Blocks are
timestamped in order to create the digital
ledger. However, block timestamps are in the
control of the miners, namely the block
creators. Early randomness is predictable and
can be tempered with.
Some of the attacks may be influenced by the
three layers, the general, the Blockchain, and
the Ethereum one. However, they may be
performed differently. For example, a DDOS,
attack is in theory not possible on the whole
Blockchain network due to its distribution
nature. However, an attack on particular
transaction can be performed by front running
the transaction on the Blockchain level. Gas
based denial of service is a Ethereum
particular vulnerability which exploits the
mechanism of gas. The gas limit will be
triggered whenever big complication is
needed such as looping through a long array.
Gas based attacks may be performed by filling
up a certain array with dummy data [11].

4. The business of smart contracts
According to the Cambridge Dictionary, a
contract is a legal document that states and
explains a formal agreement between two
different people or groups [12]. However,
smart contracts are not legal agreements. Nor
they are not self-enforceable.
Blockchain started from a need of
decentralization. Blockchain is the
middleman replacer for financial transactions.
Smart contracts can be treated like businesses.
They are in the business of enabling trust and
transparency between multiple parties while
adding custom logic.

4.1 Smart Contracts Business Model
The Business Model Canvas, developed by
Alexander Osterwalder and Yves Pigneur [6],
is a strategic tool that allows for visualization
and ideation on different business ideas or

concepts. It is a one-page document
containing nine quadrants that represent
different fundamental elements of a business.
Other variations have
been created over the years, such as the lean
model canvas or value proposition canvas.
 The 9 aspects of Canvas are as follows:
1. Value proposition: The products and
services that create value for a specific value
segment, solving a problem or satisfying a
need.
2. Customer segments: The groups of people
or that the company intends to serve and
create value for.
3. Channels: The ways in which the company
communicates and delivers the value
proposition to purchasing segments.
4. Customer relationships: The types of
relationships a company establishes with
specific customer segments.
5. Revenue streams: The ways in which the
business generates revenue from the value
proposition it offers to customers.
6. Key resources: The most important assets
needed to make the business model work.
7. Key activities: The most important actions
the company must take to make its business
model work.
8. Key partners: The network of suppliers and
partners that make the business model work.
9. Cost structure: All the costs involved in
operating the business model.
Smart contracts do not have customers,
meaning they do not sell products in the
traditional way. Instead, they have user actors
who represent particular addresses that can
interact. In addition to regular users, there can
also be contract owners who have special
management rights. They can be those who
submitted the contract or different entities. It
can also be a single entity or several entities.
Certain entities can interact with the contract,
but following some actions taken by it, we can
include them in the key partner’s section.

Informatica Economică vol. 30, no. 1/2025 47

Fig. 2. Rekt Test Business Model Canvas

In Figure 2, one can see the 12 questions of
the rekt test proportionally being mapped to
six out of the nine quadrants of the business
model canvas. Figure 2 represents the
Business model Canvas for the specific
elements of a Smart contract. Over the years,
specific value propositions have emerged,
starting with the creation of tokens (ERC20)
and continuing with the creation of NFTs
(ERC721) and their use in DAO or the DEFI
world. These cases can be dissected more
depending on their use in specific business
verticals, but implementations are necessary
from a security point of view.

4.3 The “Rekt” test
The Rekt test was created by a group of
blockchain security experts led by Trail of
Bits CEO Dan Guido [13]. "Rekt" is a slang
term for "wrecked" or "destroyed" in the
context of cryptocurrency.
The test is modelled after The Joel Test, which
assesses the quality of software development
teams.
The Rekt Test is a set of 12 simple yes/no
questions designed to evaluate the security
practices of the smart contract-based
protocols and their development teams.

Fig. 3. The “Rekt” Test Business Model Canvas

Figure 3 we can see the 12 questions of the
Rekt test proportionally being mapped to six

out of the nine quadrants of the business
model canvas. The Rekt test does not bring

48 Informatica Economică vol. 30, no. 1/2025

into question the value of the contract product
nor the mechanisms related to funds.

4.2 The who-what-how-why
The ‘business model’ describes the sum of
activities, inputs and outputs surrounding
value creation. The “who-what-how-why”
framework is used to define business models
and dig deep into the intricacies of modelling.
According to the Business Model Navigator

[7], the “who-what” addresses its external
aspects and “how-why” its internal
dimensions. When treating smart contracts as
a business, one can model its value
proposition, access, and internal mechanisms.
The aim of the framework is to underline the
user and actor segments, calling the contracts,
the values passed to and retrieved from smart
contracts and the internal mechanism of the
smart contracts or of those relied on.

.

Fig. 4. The who-what-how-why framework

Figure 4 depicts the array of questions one
needs to ask in order to map contract
activities. Contracts are accessed through
transactions, which can receive data natively
in ether. Properly handling interactions with
external transactions requires implementing
robust input validation mechanisms. Rigorous
parameter checking, limiting acceptable
values, and implementing edge case
protections dramatically reduce the risk of
exploitation. Using specific authorization and
validation modifiers (such as those in the
OpenZeppelin library) provides an additional
layer of protection.
Securing interactions involving ETH requires
careful design of payable functions.
Validating received values, implementing
minimum and maximum limits, and logically
separating funds processing from other
contract operations are essential. The pull
payment pattern, in which users claim their
funds themselves instead of receiving them
automatically, can prevent many blocking
attacks.

To better understand the overall perspective,
we need to map the interaction area of a Smart
contract. A smart contract can interact with a
transaction coming from an externally owned
account, another Smart contract, or it can send
transactions to the Ethereum Virtual Machine.
Figure 5 maps the interactions that a contract
can have. A transaction can only be started
from an externally owned account. This is also
the tx.origin variable. Before the transaction
reaches the destination contract, it can pass
through other contracts. The last contract is
then "msg.sender" variable. In both cases, the
inputs and access rights must be validated
whether a transaction comes directly from a
contract or from an external account. In figure
number [5], the Input Smart contract and
External Account represent the potential
actors communicating with an audited
counterparty. When a smart contract calls
another Smart contract, it can use the
fallback/receive function mechanism to
execute certain codes multiple times.

Informatica Economică vol. 30, no. 1/2025 49

Fig. 5. Smart Contract Interactions

Because of this built-in functionality in
Ethereum, there can be attacks such as
reentrancy attacks, the most famous being the
DAO hack [14]. In figure number [5], the
Output Smart Contract represent partner
contracts from which values can be read. If
these values can be manipulated, the logic will
also be faulty. An audited contract can call
another contract to read the state of an NFT or
the balance of a token. As a result, it can call
to send funds. If the contract that receives
those funds does not support certain
functionalities, these funds can be lost.
4.3 The time component
The smart contract life cycle has three main
stages. The first phase is the pre-deployment
phare, with activities related to design,
development and testing of smart contracts.
The design phase establishes the actors, their
economic incentives, and the reward
mechanism. Design vulnerabilities may create
systematic problems, harder to fix, using a
simple patch approach. Hence,
comprehensive documentation of all use cases

and limitations, mathematical modeling and
simulation of extreme scenarios and
implementation of safety mechanisms such as
emergency stop or circuit breakers.

It is considered a good practice, in the
development phase, to use highly tested and
audited libraries, such as OpenZeppelin [11],
implementing a wide range of test, unit,
integration, fuzzing, and code review and
formal audits from external parties.

The project launch can be vulnerable to
assets initial price manipulation, and unfair
token distribution. Protecting the launch
moment requires implementing anti-bot
mechanisms and using whitelist addresses for
verified participants. Limiting transactions
per address prevents the concentration of
resources. Implementing vesting schedules
reduces the impact of immediate massive
sales. Using dutch auctions or other price
discovery mechanisms ensures a more
accurate valuation and minimizes the
opportunity for manipulation.

50 Informatica Economică vol. 30, no. 1/2025

Fig. 6. Second Layer Deployment Process

Figure number 6 depicts the life cycle of
Smart contracts. In the first phase, the
contracts are developed and audited before
being deployed in the blockchain. This phase
is vital from the perspective of the smart
contracts paradigm: immutable pieces of
code. Hence, the time spent on this phase must
be more significant than other software
products to properly and thoroughly
document, test, and audit the contracts. Best
practices for language-specific matters must
be followed [15]. For example, in the crypto
world, all code sources must go through at
least two external auditor processes.
Depending on the feedback received from
these entities, it can be reiterated at any of the
phases. Next is the phase where the contract is
placed and initialized through a transaction.
The importance of this phase is given by the
consequences that the wrong treatment of
some parameters may cause. The next phase
is the active operation, the most extended
phase. During this period, in addition to daily
ones, such as reading the contract status, there
may also be specific operations that, in turn,
include other periods. There may be periods
of voting, governance, staking or vesting. For
example, a voting period requires a voting

start time, a period during which voting is
allowed, and a deadline. In theory, this active
phase of a Smart contract can run indefinitely.
If the contract faces an imminent emergency
related to a vulnerability or malfunction, or
the contract governors want to improve the
contract logic, the contract can enter a new
shutdown phase. From this phase, it can return
to the active running phase, or there can be an
upgradeability mechanism in which a new
contract will be built to replace the old
contract. The update will not be performed
instead, in the case of web2, methods are
needed to transfer storage and transfer funds.

6 The auditing process
Smart contracts must employ structured
evaluation methodologies based on well-
defined checklists. These checklists [16]
should include key security questions, concise
descriptions of potential risks, and
corresponding remediation strategies. A
structured approach ensures that critical
security considerations—such as access
control, privilege management, and
inheritance handling—are thoroughly
examined.

Informatica Economică vol. 30, no. 1/2025 51

Table 1. The Access Control Audit
No. Question Description Remedy

1
Are all actors and their
interactions clearly
defined?

Identifying actors and
interactions is crucial for
security.

List all actors and interactions,
then create a diagram.

2
Are there functions
without proper access
controls?

Missing access controls can
lead to unauthorized
modifications or withdrawals.

Implement and test access
controls like onlyOwner or role-
based permissions.

3 Do certain addresses
require whitelisting?

Whitelisting restricts
interactions to trusted
addresses for additional
security.

Implement a whitelisting
mechanism for sensitive
operations.

4
Does the protocol
allow privilege
transfers?

Privilege transfers should
follow a two-step process for
added security.

Implement a two-step transfer
mechanism requiring
confirmation by the new owner.

5 What happens during
privilege transfers?

The protocol should function
correctly and predictably
during transfers.

Verify protocol behavior during
privilege transfers.

6
Does the contract
inherit other
contracts?

Inherited functions may
expose unintended access if
not properly overridden.

Review the accessibility of
inherited external/public
functions.

7
Does the contract use
tx.origin for
validation?

tx.origin can be exploited by
malicious contracts;
msg.sender is safer.

Use msg.sender instead of
tx.origin for validation.

Table 1 shows a series of questions that can be
asked to define the permissions required to
access smart contracts [16]. The questions are
accompanied by a description and
remediation if the security implication
applies. The checklist-based audit ensures the
adoption of an adversarial programming
approach and constantly prepares for the
worst-case scenario by assuming that
elements might malfunction. Two additional
columns can be added to the table, one for
concrete examples and one for the
applicability of the current case. Using
checklist approaches, developers can force
themselves to anticipate potential issues,
vulnerabilities, and challenges before they
arise.

7 Conclusions and Future Work
Smart contracts are the security backbone of
the Ethereum or compatible blockchain.
The need for auditing and testing
encompasses three perspectives: the technical,

business and ecosystem. Technically, it is well
known that developers often make mistakes
when writing code, but errors may spring from
language-specific issues or the operating
system. Thus, system behavior can be
challenging to predict from the behavior of
components alone. Business-wise, errors may
impact user and customer perspectives and
sales. Even if mistakes are not found initially,
they may appear due to user interaction.
Fixing errors is more expensive in post-
production. Lastly, ecosystem-wise, testing is
an intrinsic professional activity of blockchain
protocols. The credibility of a protocol
increases with the existence of a well-
established testing suite. There is no complete
list of all the vulnerabilities that may arise.

52 Informatica Economică vol. 30, no. 1/2025

References
[1] Bitcoin: A Peer-to-Peer Electronic Cash

System (2008) - Satoshi Nakamoto.
Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin, Ethereum Whitepaper: A
Next-Generation Smart Contract and
Decentralized Application Platform,
2014, Available at:
https://ethereum.org/en/whitepaper/

[3] N. Szabo, Smart Contracts: Building
Blocks for Digital Markets, 1996,
Available at:
http://www.truevaluemetrics.org/DBpdfs/
BlockChain/Nick-Szabo-Smart-
Contracts-B ui lding-Blocks-for-Digital-
Markets-1996-14591.pdf

[4] Ojog, S.: An Overview of Security Issues
in Smart Contracts on the Blockchain. In:
Proceedings of 21st International
Conference on Informatics in Economy
(IE 2022), vol. SIST, no. 321, pp. 51–63.
Springer, Heidelberg (2023).

[5] Solidity Security Patterns, Available at:
https://github.com/fravoll/solidity-
patterns/

[6] Osterwalder, A., & Pigneur, Y., Business
Model Generation: A Handbook for
Visionaries, Game Changers, and
Challengers. John Wiley & Sons, 2010.

[7] Gassmann, O., Frankenberger, K., & Csik,
M., The Business Model Navigator: 55
Models That Will Revolutionise Your
Business. Pearson, 2014.

[8] X. (Brian) Wu, Z. Zou, D. Song, “Learn
Ethereum: Build your own decentralized

applications with Ethereum and smart
contracts”, Packt Publishing, 2023.

[9] G. Wood, Ethereum: A Secure
Decentralized Generalized Transaction
Ledger, Available at:
https://ethereum.github.io/yellowpaper/pa
per.pdf

[10] ConsenSys, Smart Contract Best
Practices, ConsenSys Security Guide.
Available at:
https://consensys.github.io/smart-
contract-best-practices/.

[11] OpenZeppelin, OpenZeppelin Smart
Contract Libraries, GitHub Repository.
Available at:
https://github.com/OpenZeppelin/openze
ppelin-contracts.

[12] Cambridge Dictionary -
https://dictionary.cambridge.org/dictionar
y/english/contract

[13] The “Rekt Test” – Trail of Bits
https://blog.trailofbits.com/2023/08/14/ca
n-you-pass-the-rekt-test/

[14] Understanding a Revolutionary and
Flawed Grand Experiment in Blockchain:
The DAO Attack - Journal of Cases on
Information Technology 21(1) 19-32.

[15] Solidity Documentation, Solidity:
Ethereum’s Smart Contract Language,
Official Documentation. Available at:
https://docs.soliditylang.org/.

[16] Cyfrin, Audit Checklist for Smart
Contracts, GitHub Repository. Available
at: https://github.com/Cyfrin/audit-
checklist/blob/main/checklist.json.

Silviu OJOG has graduated the "Gh. Asachi" Technical University, in 2013,
in Iasi Romania, BSc in Applied Electronics. He graduated from the University
of Bucharest, Romania, with an MSc in Software Engineering in 2016. He is
currently enrolled as a PhD Student in Economic Informatics at Bucharest
University of Economic Studies. He holds a certification in new venture
leadership from the Massachusetts Institute of Technology, USA, following a
study program in Brisbane, Australia.

https://github.com/fravoll/solidity-patterns/
https://github.com/fravoll/solidity-patterns/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://dictionary.cambridge.org/dictionary/english/contract
https://dictionary.cambridge.org/dictionary/english/contract
https://blog.trailofbits.com/2023/08/14/can-you-pass-the-rekt-test/
https://blog.trailofbits.com/2023/08/14/can-you-pass-the-rekt-test/
https://docs.soliditylang.org/
https://github.com/Cyfrin/audit-checklist/blob/main/checklist.json
https://github.com/Cyfrin/audit-checklist/blob/main/checklist.json

Informatica Economică vol. 30, no. 1/2025 53

Alina-Andrea MIRON graduated in Public Administration from the
National School of Political and Administrative Studies in 2012 in Bucharest,
Romania. She holds two master's degrees, one in Public Sector Management
at the National School of Political and Administrative Studies in 2014 and
the other in Online Marketing at the Academy of Economic Studies in
Bucharest, Romania, in 2021. She is currently enrolled as a PhD student in

Marketing, and her thesis is related to social responsibility communication. She is also an
associate lecturer teaching PR.

