
Informatica Economică vol. 28, no. 2/2024 17

Predicting Alzheimer’s Disease Using Deep Learning Artificial Intelligence

Together with a Pre-Trained VGG19 and Inception_v3 Models

Paul Gabriel TEODORESCU1, Silvia OVREIU1,2, Mădălina ZAMFIR1, Cristian ȚÎRLEA1
1National Institute for Research & Development in Informatics - ICI Bucharest, Romania

2University Polithenica of Bucharest, Romania

paul.teodorescu@ici.ro, silvia.ovreiu@ici.ro, madalina.zamfir@ici.ro, cristian.tirlea@ici.ro

This paper presents two experiments in which, using artificial intelligence (specifically Deep

Learning with convolutional neural networks), we were able to predict Alzheimer's disease

based on MRI images. In order to have better results and to minimize the computational effort

in the laboratory, two pre-trained AI models were used, models trained previously on more

than a million images from the ImageNet database (which provide tens of millions of clean,

labelled and sorted images). The top-layers of the models were trained, for our specific task of

Alzheimer’s prediction, with 500 public MRI images from Kaggle, an online community of data

scientists and machine learning engineers and a subsidiary of Google. In this paper we describe

the code used in the laboratory for the specific task.

Keywords: MRI images, ImageNet, Feature extractor, Demented, Accuracy, Pre-trained, Tar-

get, Convolutional, Matrix

DOI: 10.24818/issn14531305/28.2.2024.02

 Introduction

Predicting Alzheimer's based on MRI

(Magnetic Resonance Imaging) images is a

promising area of medical research with the

potential to revolutionize the diagnosis and

treatment of this debilitating condition. MRI

images provide detailed insight into the struc-

ture and functioning of the brain, allowing re-

searchers to identify early signs of Alzhei-

mer's disease with increased accuracy and

sensitivity. Using machine learning and artifi-

cial intelligence algorithms, researchers can

analyze the volume, shape and connectivity of

different brain regions in MRI images to de-

tect changes associated with Alzheimer's dis-

ease. This approach can identify subtle abnor-

malities in brain structure that may be early

indicators of cognitive decline associated with

the disease.

However, it is important to emphasize that the

prediction of Alzheimer's based on MRI im-

ages is still in the research and development

stages [1]. More studies and validation are

needed to confirm the accuracy and reliability

of these diagnostic techniques. Ethical and

privacy issues also need to be considered re-

garding the use of medical data and artificial

intelligence algorithms in medical practice.

Despite the challenges and ethical questions,

advances in MRI imaging and artificial intel-

ligence promise to offer significant opportuni-

ties for the early diagnosis and management of

Alzheimer's disease [2], which could lead to

significant improvements in the quality of life

of patients and their families.

In this paper, two experiments will be done for

Alzheimer predictions using AI with public

data. In what is presented, it is clearly revealed

that AI is in an active phase of research and

development and that this field will revolu-

tionize the way these conditions are diag-

nosed, treated and managed [3].

In our experiments, for Alzheimer's prediction

we will use MRI images. Work is done in the

Google Colab environment, which offers

many advantages for developing and running

Python code, especially in the areas of ma-

chine learning, deep learning and data analy-

sis. Google Colab also offers free access to

powerful computing resources (including

GPU graphics processors, TPU tensor proces-

sors that can significantly speed up the train-

ing time of machine learning models. Since

these experiments were team-based, Google

Colab (via Google Drive) enabled collabora-

tion on code development and data access.

Furthermore, Google Colab comes pre-loaded

1

18 Informatica Economică vol. 28, no. 2/2024

with a number of popular Python libraries and

packages, such as TensorFlow, Keras, NumPy

and Pandas, facilitating rapid development

and experimentation and thus

eliminating the need to install and configure

software on local devices.

In the first experiment, we’ll use the pre-

trained VGG19 model, which is a convolu-

tional neural network (CNN) model devel-

oped by the Visual Geometry Group (VGG) at

the University of Oxford. This architecture

has been trained on a massive set of images

from the ImageNet database. VGG19 is

known for its simplicity and depth, it is often

used as a pre-trained model, has 19 layers, in-

cluding 16 convolutional layers and 3 fully

connected layers. The depth of the network is

one of its distinguishing features and is known

for its ability to capture complex details from

images. The Google Colab environment in

which we worked, helped us cope with the

high computational demands required by this

architecture. What is important to understand

in these experiments is that instead of training

a neural network built by us from scratch, a

pre-trained model is used. This model has

weights updated previously with large da-

tasets from ImageNet (ImageNet data). So, in

our experiment we do not want to update the

weights of the lower layers during the training

operation and therefore they will be frozen.

The top layers are to be eliminated and re-

placed with custom layers. Some pieces of

code later on will make this clarification:

include_top=False together with layer.trainable = False.

It does not make sense to update the base

VGG19 model weights because they have al-

ready been updated with large datasets. The

lower layers of the network have learned from

these large datasets and only the upper layers

(i.e. the fully connected ones) are trained in

the present experiment, on a public dataset

that will be located on Google Drive. The net-

work used will therefore act as a fixed feature

extractor and this process is called "transfer

learning" [2]: what the VGG19 [5] network

has learned (being trained on a huge ImageNet

dataset), it will be transferred to the new task

which is the Alzheimer's prediction.

The following explains how the code was

written. This code will classify the MRI im-

ages stored in the Alzheimer’s-Disease folder

on Google Drive. To access this data (which

are .jpg images), the Google Drive is mounted

within the workspace of the current Colab

notebook session:

from google.colab import drive

drive.mount('/content/drive')

We’ll use TensorFlow which has become one

of the most popular and influential machine

learning platforms having artificial intelli-

gence libraries available. The TensorFlow

module contains implementations for Keras, a

high-level library for building and training

neural networks.

2 Components of TensorFlow's Keras API

In order to build neural network, is necessary

to import various components. First, we’ll

start to import specific layer classes from Ten-

sorFlow and Keras module. Layer classes in

deep learning frameworks (like TensorFlow

and Keras) are fundamental building-blocks

used to construct neural networks. Each layer

class represents a specific type of mathemati-

cal operation or transformation that can be ap-

plied to the input data to produce output data.

These layers are organized sequentially to

form the architecture of the neural network.

Layer classes abstract away the complexity of

implementing neural network components

such as neurons, activation functions and

weight matrices. Instead of manually coding

these components, we can use pre-imple-

mented layer classes, which simplifies the

process of building neural networks:

Informatica Economică vol. 28, no. 2/2024 19

from tensorflow.keras.layers import Input, Lambda, Dense, Flatten, AveragePooling2D,

Dropout

Input layer is used to instantiate a Keras tensor

[3] , Lambda layer is used to implement cus-

tom operations or functions, Dense layer is

used as a fully connected layer for output in

classification tasks, Flatten layer is used to

flatten the input tensor into a one dimensional

array, a layer to perform 2D average pooling

operation over the input data, an Average-

Pooling2 layer and the Dropout layer to pre-

vent overfitting through regularization tech-

nique (randomly sets a fraction of input units

to zero during training).

Having now the high-level interface for con-

structing our architecture of the neural net-

work, we need to import several modules and

functions from TensorFlow and Keras, which

are useful for working with deep learning

models, especially convolutional neural net-

works (CNNs). One of the fundamental build-

ing-block for defining and organizing neural

network architectures is the Model class. The

Model class allows us to compose neural net-

work architectures by specifying the input and

output layers. It provides a high-level inter-

face for defining and managing this hierar-

chical structure, making it easy to conceptual-

ize and implement complex architectures.

Also, the Model class provides built-in meth-

ods for training and evaluating the model on

training, validation and test data. It abstracts

away the details of the training loop, including

forward and backward passes, parameter up-

dates and performance metrics calculation,

simplifying the process of training and evalu-

ating neural networks. Considering that we

will address the transfer learning process in

this paper, it is worth mentioning that Model

class facilitates transfer learning and fine-tun-

ing by providing methods for freezing and un-

freezing specific layers or groups of layers, as

we’ll do in our experiments:

from tensorflow.keras.models import Model

Next, we’ll import the function load_model

from TensorFlow or Keras because we’ll use

and load a pre-trained model. Also, this func-

tion allows us not only to load pre-trained

models, but also can serve as a starting point

for transfer learning, saving time and compu-

tational resources. It must be said that

load_model function [4] abstracts away the

details of loading and initializing neural

network models from saved files (the pre-

trained model will be saved in a file format

supported by the framework, typically in

HDF5 format). The function handles the pro-

cess of reconstructing the model architecture

and loading the trained weights and other con-

figuration parameters, making it easy to use

saved models with minimal code:

from tensorflow.keras.models import load_model

As was mentioned earlier, we decided to use

VGG19[5] in our experiments. Therefore, we

need to import this pre-trained model (trained

on the ImageNet dataset, a large dataset

containing millions of labeled images across

thousands of categories) provided by Tensor-

Flow:

from tensorflow.keras.applications import VGG19

Before feeding our data into VGG19 model, it

is necessary to apply some pre-processing op-

erations which typically involve normalizing

the pixel values of the input images to ensure

they are in the correct range expected by the

model. For doing this, the preprocess_input

function is used specifically designed for the

VGG19 model:

20 Informatica Economică vol. 28, no. 2/2024

from tensorflow.keras.applications.vgg19 import preprocess_input

Considering that we are working with images,

we need to import the image module from

TensorFlow's Keras preprocessing utilities.

The image module provides various functions

and classes. Here are some common tasks that

we can perform using the image module:

• Loading Images: The load_img() function

can be used to load images from disk into

Python variables.

• Resizing Images: The img_to_array()

function converts images loaded using

load_img() into NumPy arrays, and the ar-

ray_to_img() function converts NumPy

arrays back into images. You can also use

the resize () function to resize images to a

specific size.

• Data Augmentation [7]: The ImageDat-

aGenerator class provides methods for

performing data augmentation, such as

random rotations, shifts, flips, and zooms.

Data augmentation is commonly used to

increase the diversity of the training data

and improve the robustness of deep learn-

ing models.

• Preprocessing for Models [8]: Pretrained

deep learning models often require input

images to be preprocessed in a specific

way before making predictions. The pre-

process_input() function applies prepro-

cessing operations to input images to en-

sure that they are compatible with a partic-

ular model's requirements.

from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGenerator

As it was mentioned before, only the fully

connected layers at the end of the network are

to be trained with our custom data consisting

of 500 RMN images. These fully connected

layers are responsible for learning high-level

features from the raw pixel data provided as

input. So, doing training only for the fully

connected layers with custom data, we can

adapt the model to our specific task or dataset

while benefiting from the generalization

power of the pre-trained convolutional layers.

In other words, the learned representations of

the convolutional base layers are preserved. It

was imported the pre-trained VGG19 model

discussed earlier and also the image which

provides functions and utilities for working

with images during pre-processing. The class

ImageDataGenerator is used for generating

batches of images during the training, includ-

ing applying data augmentation to improve

the model's generalization. Also, we’ll import

necessary libraries and functions for evaluat-

ing and visualizing the performance of ma-

chine learning models, particularly classifica-

tion models. They allow for the computation

of metrics such as confusion matrix, ROC

(Receiver operating characteristic) curve and

AUC-ROC score (Area under the ROC

Curve), as well as for creating visualizations

using Seaborn and Matplotlib [5]:

from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

The confusion matrix is particularly useful for assessing the performance of a classification

algorithm when the true values of the target variable are known. It provides a more detailed

understanding of how well the model is performing in terms of different types of errors it makes.

The numpy is a fundamental package for scientific computing with Python, the Seaborn library

(sns) is a data visualization library based on Matplotlib which make drawings and informative

statistical graphics. Pyplot is a module within Matplotlib that provides a MATLAB-like plotting

interface.

Informatica Economică vol. 28, no. 2/2024 21

3 Images pre-processing, visualization and

construction of the final model

Next, the data must be pre-processed so the

path to the data is provided for this task.

Also, we’re using the glob function to search

for all files within these directories. The *

wildcard character is used to match any file

name in the directories. The variable Non-

Demfiles and Demfiles will contain lists of

file paths corresponding to the files found in

the directories specified by nondement_path

and dement_path, respectively.

dement_path = '/gdrive/My Drive/Alzheimer_Project/train/MildDemented'

nondement_path = '/gdrive/My Drive/Alzheimer_Project/train/NonDemented'

NonDemfiles = glob(nondement_path +'/*')

Demfiles = glob(dement_path + '/*')

Iterating through these two sets of image files,

Demfiles and NonDemfiles, we are perform-

ing the following steps:

• Reading the image using OpenCV's

cv2.imread() function.

• Converting the colour space from BGR to

RGB using cv2.cvtColor().

• Resizing the image to a fixed size of

229x229 pixels using cv2.resize().

• Appending the resized image to either

Dem_images or NonDem_images based

on whether the file belongs to the "De-

mented" or "NonDemented" category.

• Appending the corresponding label ("De-

mented" or "NonDemented") to either

Dem_labels or NonDem_labels.

This process prepared the dataset in order to

be categorized as either "Demented" or

"NonDemented". After running the code bel-

low, we'll have two lists:

• Dem_images: Contains resized RGB im-

ages categorized as "Demented".

• Dem_labels: Contains corresponding la-

bels ("Demented") for the images in

Dem_images.

And similarly, we'll do with NonDem images.

These lists will be used for training our model,

with the images as input features and the la-

bels as target values:

Dem_labels = []

NonDem_labels = []

Dem_images=[]

NonDem_images=[]

for i in range(len(Demfiles)):

 image = cv2.imread(Demfiles[i])

 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 image = cv2.resize(image,(229,229))

 Dem_images.append(image)

 Dem_labels.append('Demented')

for i in range(len(NonDemfiles)):

 image = cv2.imread(NonDemfiles[i])

 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 image = cv2.resize(image,(229,229))

 NonDem_images.append(image)

 NonDem_labels.append('NonDemented')

To have some visuals, we are using plot_im-

ages function to visualize a grid of images [6].

It takes a list of images (images) and a title

(title) as input, and then plots these images in

a grid layout.

def plot_images(images, title):

 nrows, ncols = 5, 8

 figsize = [10, 6]

 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize, facecolor=(1,

1, 1))

 for i, axi in enumerate(ax.flat):

 axi.imshow(images[i])

22 Informatica Economică vol. 28, no. 2/2024

 axi.set_axis_off()

 plt.suptitle(title, fontsize=24)

 plt.tight_layout(pad=0.2, rect=[0, 0, 1, 0.9])

 plt.show()

plot_images(Dem_images, 'Demented Alzheimers Scan')

plot_images(NonDem_images, 'NonDemented Alzheimers Scan')

In figure 1 is presented a grid of images spe-

cific to Demented Alzheimers and

NonDemented Alzheimers scan:

Fig. 1. A grid of images with the specified title

Normalizing pixel values to the range [0, 1]

can help improve the training process and

convergence of neural networks [7]. By divid-

ing each pixel value by 255, we're scaling the

values to be in the range [0, 1], as the original

pixel values typically range from 0 to 255 (as-

suming 8-bit color depth).

Dem_images = np.array(Dem_images) / 255

NonDem_images = np.array(NonDem_images) / 255

We mentioned that the images we are working

with (and which constitute the training da-

taset) are divided in two classes/categories:

with and without dementia, as you can guess

from the names of the folders that contain

them. The features and the label of each photo

are contained in variables X_train (for fea-

tures) and y_train (for labels) which are vec-

tors/arrays input data. The X_train represent

the input features or attribute of the data (is a

matrix of pixel values) and y_train contains

the corresponding labels for the images in

X_train, indicating their class or category.

Typically, when we have dataset with input

features (X) and corresponding labels or target

variables (y), we want to split it into separate

sets for training your model and testing its per-

formance. A commonly function used in ma-

chine learning to do this is train_test_split.

Dem_images represents the features (input

data, images) associated with demented data

and Dem_labels are the corresponding labels

(output data, class labels) associated with the

demented data:

Dem_x_train, Dem_x_test, Dem_y_train, Dem_y_test = train_test_split(

 Dem_images, Dem_labels, test_size=0.2)

And for non_demented data:

NonDem_x_train, NonDem_x_test, NonDem_y_train, NonDem_y_test = train_test_split(

 NonDem_images, NonDem_labels, test_size=0.2)

The parameter test_size=0.2 specifies that

20% of the data will be reserved for testing,

while the remaining 80% will be used for

training. After splitting the data, we have the

Informatica Economică vol. 28, no. 2/2024 23

following variable:

Dem_x_train contains the features (images) of

the demented data used for training,

Dem_x_test contains the features (images) of

the demented data used for testing,

Dem_y_train contains the corresponding la-

bels of the demented data used for training,

Dem_y_test contains the corresponding labels

of the demented data used for testing. Simi-

larly, the non-demented data split process will

take place. The resulting data can now be used

for training and for evaluating machine learn-

ing models separately on each dataset. The

data preparation (preprocessing step) continue

with concatenation tasks resulting new varia-

bles:

X_train = np.concatenate((NonDem_x_train, Dem_x_train), axis=0)

X_test = np.concatenate((NonDem_x_test, Dem_x_test), axis=0)

y_train = np.concatenate((NonDem_y_train, Dem_y_train), axis=0)

y_test = np.concatenate((NonDem_y_test, Dem_y_test), axis=0)

The first line concatenates the features (input

data, images) from both the dem

(Dem_x_train) and non-dem (Non-

Dem_x_train) training sets along the specified

axis (axis=0 indicates concatenation along the

rows). The resulting X_train contains the

combined features for training. Similarly,

we'll do with Training labels (y_train), with

Testing data (resulting X_test) and with Test-

ing labels (y_train). After that, is necessary to

binarize the labels converting them into binary

representation. Then, the function to_categor-

ical from Keras is applied to convert the bina-

rized labels into one-hot encoded vectors[8].

y_train = LabelBinarizer().fit_transform(y_train)

y_train = to_categorical(y_train)

y_test = LabelBinarizer().fit_transform(y_test)

y_test = to_categorical(y_test)

The plotting process shows the images from

Table 2.

plot_images(Dem_x_train, 'X_train')

plot_images(Dem_x_test, 'X_test')

In figure 2 is presented a grid of images with the variable X_train and X_test:

Fig. 2. A grid of images with the variable name as title

We are now ready to build a new neural net-

work model for classification using transfer

learning with the VGG19 architecture as a

base.

VGGmodel = VGG19(weights="imagenet", include_top=False,

 input_tensor=Input(shape=(229, 229, 3)))

24 Informatica Economică vol. 28, no. 2/2024

This line creates an instance of the VGG19

model using pre-trained weights from the

ImageNet dataset (weights="imagenet"). It

sets include_top=False to exclude the fully

connected layers at the top of the VGG19 net-

work, as these will be replaced with custom

layers [9]. The input_tensor parameter defines

the shape of the input data, which is expected

to be an image with dimensions (229, 229, 3)

(height, width, channels). We need now to de-

fine additional layers to be added on top of the

VGG19 base model: Flatten layer is used to

flatten the output tensor from the VGG19 base

model, Dropout layer is applied with a drop-

out rate of 0.4 to prevent overfitting, Dense

layer with 2 units and softmax activation func-

tion. This is added as the output layer for bi-

nary classification (2 classes):

outputs = VGGmodel.output

outputs = Flatten(name="flatten")(outputs)

outputs = Dropout(0.4)(outputs)

outputs = Dense(2, activation="softmax")(outputs)

It is time to construct the final model by spec-

ifying the inputs (defined by the input layer of

the VGG19 model) and the outputs (defined

by the custom layers):

model = Model(inputs=VGGmodel.input, outputs=outputs)

As was mentioned, only the custom layers

added on top of the VGG19 model will be

trained. So, we’ll loop through all the layers

of the VGG19 base model to set them to non-

trainable, freezing their weights during train-

ing.

for layer in VGGmodel.layers:

 layer.trainable = False

The final model needs to be compiled specify-

ing the loss function (categorical_crossen-

tropy) for multi-class classification, optimizer

(adam), and evaluation metric (accu-

racy)[10]:

model.compile(

 loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy']

)

The next step is to get the pre-trained weights

for the VGG19 model from the TensorFlow

website [11]. The message "Downloading

data from..." indicates that the weights file is

being fetched from the specified URL

(https://storage.googleapis.com/tensor-

flow/keras-applica-

tions/vgg19/vgg19_weights_tf_dim_order-

ing_tf_kernels_notop.h5). For this, we’ll

download a file with .h5 extension called

vgg19_weights_tf_dim_ordering_tf_ker-

nels_notop.h5. The file contains the pre-

trained weights for the VGG19 model without

the top (fully connected) layers. This file is

used for transfer learning with the VGG19 ar-

chitecture, as it provides a starting point for

training a new model on a different dataset

(our own dataset) for predicting Alzheimer.

Once the download is complete, the weights

will be stored locally on our system and can

be used to initialize the VGG19 model in our

code. The line of code:

model.summary()

gives us the architecture of the model (Fig.3),

with layers displayed in sequence from input

to output, layer types, output shapes and the

number of parameters in each layer.

Informatica Economică vol. 28, no. 2/2024 25

Fig. 3. The architecture of the VGG19 model

4 Training the model and predicting on the

test data

The training will be made using the fit method

(from Keras) with the observation that our

training data is augmented on the fly and put

it in the train_aug object [12]. This technique

is used to artificially increase the size of our

training dataset by applying various transfor-

mations (random transformations such as ro-

tation, flipping and shifting) to the input data

in order to improve the generalization and ro-

bustness of the trained model. The line of code

for starting the training is:

history = model.fit(train_aug.flow(X_train, y_train, batch_size=batch_size),

 validation_data=(X_test, y_test),

 validation_steps=len(X_test) / batch_size,

 steps_per_epoch=len(X_train) / batch_size,

 epochs=epochs)

The fit method trains the model on the training

data (X_train and y_train) using the specified

parameters and evaluates its performance on

the validation data (X_test and y_test, features

and labels). It can be observed that the valida-

tion was done with test data (X_test) to which

labels are known. In this way the results can

be checked/validated. Test data it will be used

again (only once) on the final model, which is

completely trained with training data and val-

idated with validation data sets. It should be

specified that the test data was never seen by

the model in the learning operation. During

training, the model's weights are updated iter-

atively using an optimization algorithm

(Adam optimizer [13]) to minimize the speci-

fied loss function (categorical cross-entropy).

The training progress is monitored and rec-

orded in the history object, which can be used

for visualization and analysis after training is

complete. The train_aug object contains the

new training samples obtained after data aug-

mentation by slightly modifying the existing

ones. The flow operation generates batches of

augmented training data (X_train and y_train)

in real-time. The number of steps is calculated

based on total number of images divided by

the batch size (epochs = 500 and batch_size =

64).

During the training process, after each epoch

(or a specified number of batches), the model's

performance is evaluated on the validation

data. This evaluation provides insights into

how well the model is able to generalize to un-

seen data and helps identify whether the

26 Informatica Economică vol. 28, no. 2/2024

model is overfitting in the training process.

The iterations are taking place over the entire

training dataset. In figure 4, can be seen the

progress of training and validation processes,

together with the results: average loss over all

training samples in the current batch (loss),

the accuracy of the model on the current batch

of training samples (accuracy), the average

loss over all validation samples (val_loss) and

the accuracy of the model on the current batch

of validation samples (val_accuracy). In the

figure below, it can be seen the final epoch

(epoch 500) with the final training accuracy

and the final validation accuracy: 0,94 and

0,88. These updates help monitor the perfor-

mance of the model during training and pro-

vide insights into its learning behavior and

convergence.

Fig. 4. The training and validation processes

Using the function save in Keras we are now

saving the entire model (architecture, weights,

and training configuration) to a file in the Hi-

erarchical Data Format 5 (HDF5) format. This

allows us to store the trained model for later

use, deployment, or sharing with others.

Here's how the function works [4]:

model.save('AD_Model_VGG19.h5')

We can then load this saved model using the

keras.models.load_model() function to reuse

it for inference, evaluation or further training:

model = load_model('AD_Model_VGG19.h5')

from tensorflow.keras.models import Model, load_model

Please note that we were able to load this

model because we imported initially, at the

start of this programme, the load_model func-

tion from tensorflow.keras.models.

Having the model (already trained), we are

ready to use it and obtain predictions from it

on the test data (X_test) [14]. It’s better to

specify the batch size to help control memory

usage and computation time:

y_pred = model.predict(X_test, batch_size=batch_size)

After executing this line of code, y_pred will

contain the predicted outputs (or probabilities)

for each sample in the test dataset. These pre-

dictions can then be further analyzed, evalu-

ated, or compared with the ground truth labels

(y_test) to assess the performance of the

model.
Our next intention is to visualize the predic-

tions made by our model for a subset of the

test data (the first 9 samples in the test da-

taset). We are therefore looping through the

Informatica Economică vol. 28, no. 2/2024 27

selected predictions, display the correspond-

ing images and add titles to the plots

indicating the predicted probabilities of being

Demented or NonDemented:

prediction=y_pred[1:10]

for index, probability in enumerate(prediction):

 if probability.item(0) > 0.5:

 plt.title('%.2f' % (probability.item(0)*100) + '% Demented')

 else:

 plt.title('%.2f' % ((1-probability.item(0))*100) + '% NonDemented')

 plt.style.reload_library

 plt.imshow(Dem_images[index])

 plt.show()

Fig. 5. The predictions

In figure 5 is presented the visualization of

predictions.

5 Various visualizations and graphs

The ROC curve illustrates (as in figure 6) the

performance of our binary classification

model [15]. A perfect classifier would have a

curve that goes straight up to the top-left

corner: 100% sensitivity (true positive rate)

and 100% specificity. The diagonal line from

the bottom-left to the top-right reflects ran-

dom guess. In general, the closer the ROC

curve is to the top-left corner, the better the

classifier is at distinguishing between the two

classes. The code for ROC curve visualiza-

tion is:

y_pred_bin,y_test_bin=None,None

y_pred_bin = np.argmax(y_pred, axis=1)

y_test_bin = np.argmax(y_test, axis=1)

fpr, tpr, thresholds = roc_curve(y_test_bin, y_pred_bin)

auc = roc_auc_score(y_test_bin, y_pred_bin)

print('AUC: %.3f' % auc)

plt.plot(fpr, tpr)

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.0])

plt.rcParams['font.size'] = 12

plt.title('ROC curve for our model')

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.savefig('VGG19_ROC.png')

plt.grid(True)

In figure 6 can be seen the resultant ROC curve:

28 Informatica Economică vol. 28, no. 2/2024

Fig. 6. The ROC curve

In order to plot a Confusion Matrix, we’ll de-

fine a function called plot_confusion_matrix

and and we’ll use the confusion_matrix func-

tion with the following arguments:

• y_test_bin contains the true labels,

• y_pred_bin contains the predicted labels.
The normalize parameter determines whether

to normalize the confusion matrix or not,

based on the value of the normalize argument

passed to the function:

def plot_confusion_matrix(normalize):

 classes = ['DEM','NONDEM']

 cn = confusion_matrix(y_test_bin, y_pred_bin,normalize=normalize)

We intend to plot the confusion matrix as a

heatmap using the seaborn library. We’ll save

the plot as an image file named

'VGG19_Confusion_Matrix.png', and we’ll

display the plot on the screen (figure 7):

sns.heatmap(cn,cmap='plasma',annot=True)

 plt.xticks(tick_marks, classes)

 plt.yticks(tick_marks, classes)

 plt.title('Confusion Matrix')

 plt.ylabel('True label')

 plt.xlabel('Predicted label')

 plt.savefig('VGG19_Confusion_Matrix.png')

 plt.show()
print ('Confusion Matrix fara Normalizare')

plot_confusion_matrix(normalize=None)

print('Confusion Matrix cu Normalizare')

plot_confusion_matrix(normalize='true')

Fig. 7. Confusion Matrix without normalization

Informatica Economică vol. 28, no. 2/2024 29

Reading the matrix:

• The model had 77 good predictions for

Demented samples (True positive) from

78 samples (where 1 was a wrong predic-

tion of being Demented (False positive).

• The model predicted wrong 23 samples as

being Demented (False positive) and has

good prediction of 99 samples of being

non-demented (True negative) from 122.

The total samples of positive class (Dem)

is 78 and the total samples for negative

class (NonDem) is 122. The total of sam-

ples (test set) is 200.

Applying the formula for the Accuracy from

the Confusion Matrix, accuracy is the number

of samples correctly classified out of all the

samples present in the test set:

(77+99)/(77+23+1+99)= 176/200= 0.88.

Using the classification_report function from

scikit-learn we are generating a comprehen-

sive report of the classification performance,

including precision, recall, F1-score, and sup-

port for each class (Figure 8):

from sklearn.metrics import classification_report

print(classification_report(y_test_bin, y_pred_bin))

Fig. 8. The Classification report

Continuing to visualize the results based on

the information captured in the history object,

in the table 1 the graphs are drawn for the

training and testing accuracy, the training and

testing loss of the neural network used here.

The loss quantifies the difference between the

predicted output of the model and the actual

target values. The goal of training a machine

learning model is to minimize this loss, which

essentially means making the model’s predic-

tions as close to the actual target values as pos-

sible.

Table 1. Graphs of accuracy and loss evolution through epochs

30 Informatica Economică vol. 28, no. 2/2024

6 VGG19 versus Inception_V3

In the above experiment it was seen how, by

using a pre-trained model (which involves

training the model on a large dataset such as

ImageNet (containing millions of labeled

images), the results are impressive. We now

propose to choose another model that has been

widely adopted in the computer vision com-

munity for its efficiency and effectiveness in

various tasks: Inception_v3.

Table 2. VGG19 versus Inception_v3

One of the distinctive features of the Inception

architecture is the use of inception modules

which are modules that perform parallel con-

volutions at different scales and concatenate

Informatica Economică vol. 28, no. 2/2024 31

their results. These modules help capture fea-

tures at different levels of abstraction effi-

ciently. Due to its pre-trained weights on large

datasets like ImageNet, Inception_v3 can be

utilized for transfer learning, the same we did

previously with VGG19. Transfer learning in-

volves taking a pre-trained model and fine-

tuning it on a smaller, domain-specific dataset

(in our case was a set of RMN images) to

adapt it to a particular task. We will apply the

same code but with some changes which are

reflected in the Table 2. After running the new

code involving Inception_v3 pre-trained

model, the results are even better: the valida-

tion accuracy is higher than when we used

VGG19. Important is to understand the con-

cept of using these 2 models, to understand

how and why use the pre-trained weights

(without the weights from the fully connected

layers on top) which are downloaded from

Google Cloud Storage. The names of these

files have the .h5 extension which indicates

that it's stored in the Hierarchical Data Format

version 5 (HDF5), a common format for stor-

ing large numerical datasets. Also, the names

of these files containing the pre-trained

weights, have “notop“ indicative pointing

clearly the fact that the top fully connected

layers were eliminated:
• vgg19_weights_tf_dim_ordering_tf_ker-

nels_notop.h5

• inception_v3_weights_tf_dim_order-

ing_tf_kernels_notop.h5.

7 State of the Art

A couple of years ago, 2 researchers from Im-

perial College London and from the Depart-

ment of Biomedical Engineering, made their

own experiences in predicting AD using 3D

images and 3D CNN’s. As opposed to 2D im-

ages, 3D images contain volumetric data, cap-

turing spatial structures and relationships in

three dimensions [20]. Together with 3D

CNN’s, these three-dimensional data capture

spatiotemporal patterns providing richer in-

formation about the shape, size and spatial

distribution of AD phenomena. While 2D im-

ages used in this work offer simplicity and

ease of interpretation, 3D images provide

richer spatial information and may lead to im-

proved accuracy and performance in tasks

such as object recognition, segmentation and

tracking, as they capture a more complete rep-

resentation of the underlying 3D scene. Going

back to the experiences of the UK researchers,

they obtained an accuracy of 95,39% using a

combination of sparse autoencoders and con-

volutional neural networks. Their approach

using 3D images and 3D convolutions (on the

whole MRI image) yielded better perfor-

mance. However, 3D brain MRI is not availa-

ble in most clinical settings because 3D MRI

sequences have longer acquisition times than

two-dimensional (2D) MRI, which signifi-

cantly increase computational burden, stor-

age, and cost. Thus, the DL algorithms for di-

agnosing AD using 3D MRI may be difficult

to apply to most brain MRI scans obtained in

typical clinical settings.

In 2021, a group of researchers from Bangla-

desh and India, presented a comparative anal-

ysis of Machine Learning algorithms to pre-

dict Alzheimer’s disease [21]. Even though

Deep Learning algorithms have been used in

this paper describing our experiments, both

ML and DL can be used for predicting demen-

tia and the choice between choosing ML and

DL depends on factors such as the size and

complexity of the dataset, the availability of

labelled data, computational resources and the

expertise of the practitioners. In ML models,

features or attributes used for training are

manually designed and engineered by domain

experts rather than being automatically

learned from the data by the model itself, as in

DL models. In their research, the engineers

concluded that, with their particular dataset

(provided by the Open Access Series of Imag-

ing Studies) the system got the best results us-

ing Support Vector Machine (SVM) as op-

posed to others ML algorithms such as logistic

regression, decision tree and random forest.

Their comparison table of models is presented

in Table 3.

32 Informatica Economică vol. 28, no. 2/2024

Table 3. Comparison table of ML models

The study called “Generalizable deep learning

model for early Alzheimer’s disease detection

from structural MRIs” introduces a ground-

breaking AI-driven approach for early Alzhei-

mer's disease detection, leveraging 3D deep

convolutional neural networks on structural

MRIs [22]. The model showcases exceptional

accuracy, with an impressive area-under-the-

curve (AUC) of 85.12% when distinguishing

between cognitively normal subjects and

those with mild cognitive impairment (MCI)

or mild Alzheimer’s dementia. Additionally,

it achieves an AUC of 62.45% in detecting

MCI, a task known for its complexity.

Its utilization of advanced AI techniques not

only enhances diagnostic precision but also

significantly expedites the process compared

to conventional methods. Furthermore, the AI

model demonstrates promising capabilities in

predicting disease progression, leveraging its

ability to autonomously learn and identify im-

aging biomarkers associated with Alzheimer's

pathology. These remarkable findings under-

score the transformative potential of AI in rev-

olutionizing early diagnosis and facilitating

more effective clinical interventions for Alz-

heimer's disease.

Another study happened in Korea called

“Deep learning-based diagnosis of Alz-

heimer’s disease using brain magnetic reso-

nance images” investigated the potential of a

Korean-home-made convolutional neural net-

work (called VUNO Med-DeepBrain AD) for

diagnosing AD using 2D brain MR images as

input data (using T1-weighted magnetic reso-

nance imaging which is often used for brain

imaging) [23]. The research involved 98 el-

derly participants aged 60 years or older from

Seoul Asian Medical Centre and the Korea

Veterans Health Service. Results showed ac-

curacy of 87.1%. In their experiments, they

used Inception-v4, as opposed to Inception-v3

employed in our experiments described in this

paper. The Inception-v4 has more modules

being the next generation of Inception-v3 pre-

trained models. In the end, their work and

their results suggested that VUNO and his al-

gorithm could serve as a valuable tool for sup-

porting clinical decisions, particularly for

physicians not specialized in Alzheimer dis-

ease, thereby improving the accessibility of

AD diagnosis and treatment.

7 Conclusions

In this project, our specific tasks were Alz-

heimer’s disease prediction. Instead of build-

ing models from scratch, we leveraged pre-

trained models and transferred the knowledge

learned from huge datasets. The pre-trained

models served as powerful features extractors:

the early layers of these models learn to detect

low-level features like edges and textures

while deeper layers learn more abstract fea-

tures like shapes and patterns. The top layers

(which are typically fully connected layers)

are fine-tuned with new training data (as we

saw in our experiments) while the early layers

(convolutional and pooling layers) are frozen,

their weights were not updated retaining the

learned representation. More than that, these

models alleviate some of the computational

resources burden because we only needed to

fine-tune the models to our specific task with

fewer resources and smaller dataset. When

working with models like VGG19 and Incep-

tion_v3, we were able to find extensive docu-

mentation, tutorials and support in the deep

learning community. However, using pre-

trained models, the fine-tuning requires care-

ful hyperparameters tuning and experimenta-

tion.

References

[1] A. Moscoso and J. Silva, "Prediction of

Alzheimer's disease dementia with MRI

beyond the short-term," National Library

of Medicine, 2019.

[2] A. Md. Murshid, B. Rejwana Parvin and I.

Ariful, "Unveiling Neuroprotective Poten-

tial of Spice Plant-Derived Compounds

Informatica Economică vol. 28, no. 2/2024 33

against Alzheimer’s Disease: Insights

from Computational Studies," Interna-

tional Journal of Alzheimer's Disease.

[3] T. M., R. B. and K. R. U., "Machine

Learning Techniques for the Diagnosis of

Alzheimer’s Disease: A Review," ACM

Transactions on Multimedia Computing,

Communications, and Applications, vol.

16, no. 1s, pp. 1-35, 2020.

[4] M. Lagunas and E. Garces, "Transfer

Learning for Illustration Classification,"

in CEIG - Spanish Computer Graphics

Conference , Spanish, 2017.

[5] . J.-K. Joanna, K. Pawel and G. Marek ,

"Melanoma Thickness Prediction Based

on Convolutional Neural Network with

VGG-19 Model Transfer Learning," Po-

land.

[6] "Keras documentation," [Online]. Availa-

ble: https://keras.io/api/applications/vgg/.

[7] C. P, M. H and . V. N, "A review of med-

ical image data augmentation techniques

for deep learning applications," The Jour-

nal of Medical Imaging and Radiation On-

cology (JMIRO) , 2021.

[8] A. Samer , . G. Tom and R. Scott , "Artifi-

cial intelligence and machine learning

overview in pathology & laboratory med-

icine: A general review of data prepro-

cessing and basic supervised concepts,"

Seminars in Diagnostic Pathology, vol.

40, pp. 78-87, 2023.

[9] "Scikit-learn documentation," [Online].

Available: https://scikit-learn.org/sta-

ble/modules/model_evaluation.html.

[10] "Matplotlib documentation," [Online].

Available: https://matplotlib.org/sta-

ble/tutorials/images.html.

[11] "Normalization in image prepro-

cessing," [Online]. Available: https://me-

dium.com/@patelharsh7458/normaliza-

tion-in-image-preprocessing-scaling-

pixel-values-by-1-255-111b2fa496d4.

[12] "One hot encoding in Machine Learn-

ing," [Online]. Available:

https://www.geeksforgeeks.org/ml-one-

hot-encoding-of-datasets-in-python/.

[13] "Transfer learning," [Online]. Available:

https://www.learndatasci.com/tutori-

als/hands-on-transfer-learning-keras/.

[14] "Loss function in Machine Learning,"

[Online]. Available: https://www.data-

camp.com/tutorial/loss-function-in-ma-

chine-learning.

[15] "Tensor Flow," [Online]. Available:

https://www.tensorflow.org/api_docs/py-

thon/tf/keras/applications/vgg19/VGG19.

[16] "Image augmentation," [Online]. Avail-

able: https://d2l.ai/chapter_computer-vi-

sion/image-augmentation.html.

[17] "Adam optimizer," [Online]. Available:

https://towardsdatascience.com/the-math-

behind-adam-optimizer-c41407efe59b.

[18] "Keras Predict method," [Online].

Available: https://keras.io/api/mod-

els/model_training_apis/.

[19] F. S. Nahm, "Receiver operating charac-

teristic curve: overview and practical use

for clinicians," Korean Journal of Anes-

thesiology, vol. 75, pp. 25-36, 2022.

[20] . S. A. Sarah and E.-D. A. El-Sayed ,

"Predicting Alzheimer's Disease with 3D

Convolutional Neural Networks," Inter-

national Journal of Applications of Fuzzy

Sets and Artificial Intelligence, vol. 1,

2020.

[21] A. B. Morshedul, J. S. A H M , . M. Ma-

liha and . K. M. Mohammad , "A Compar-

ative Analysis of Machine Learning Algo-

rithms to Predict Alzheimer's Disease,"

2021.

[22] L. Sheng , . M. V. Arjun and R. Henry ,

"Generalizable deep learning model for

early Alzheimer's disease detection from

structural MRIs," 2022.

[23] K. S. Jun , . H. . W. Ji , B. B. Jong , . M.

G. Dong and . S. Jin , "Deep learning-

based diagnosis of Alzheimer’s disease

using brain magnetic resonance images:

an empirical study," 2022.

[24] "Keras documentation," [Online]. Avail-

able: https://keras.io/api/mod-

els/model_saving_apis/model_sav-

ing_and_loading/.

[25] "Understanding Confusion Matrix,"

[Online]. Available: https://towardsdata-

science.com/understanding-confusion-

matrix-a9ad42dcfd62.

34 Informatica Economică vol. 28, no. 2/2024

Paul TEODORESCU is an Engineer with an international background in en-

gineering and IT. He has worked in IT field in Romania and Canada. Special-

izing in databases, PL/SQL, Oracle, Data Warehousing, Business Intelligence,

Artificial Intelligence (Machine Learning, Artificial Neural Networks, Natural

Language Processing), he studied and worked for 11 years in Canada. He is

currently working at Computer Science Research Institute in Bucharest - ICI -

as a research scientist and is involved in Artificial Intelligence, NLP and GIS

projects.

Silvia OVREIU is PhD in Deep Learning at the Faculty of Electronics, Tele-

communications and Information Technology at the University Politehnica of

Bucharest, with the thesis titled "Retinal Image Analysis using Deep Learning

Algorithms." She was involved in research within the UPB Proof of Concept

2020 Project and served as a research assistant. She was the principal investi-

gator of the SAIGHT project (Software for Automatic Analysis of Ocular Im-

ages). The main goal of the project is to create a platform based on Deep Learn-

ing for the automatic analysis and diagnosis of ocular diseases such as glaucoma. She is in-

volved in organizing the International Summer School on Imaging with Medical Applications

(SSIMA).

Mădălina ZAMFIR graduated from the Faculty of Automation and Comput-

ers at the Polytechnic University of Bucharest. She is scientific researcher

within the Digital Transformation and Governance Department at the National

Institute for Research and Development in Informatics – ICI Bucharest. Topics

of interest in the research activity cover Cloud infrastructures, IoT support for

Big Data, Big Data Analytics, Geospatial Analytics, Metaverse.

Cristian ȚÎRLEA is a graduate of the Faculty of Electrical Engineering at the

Politehnica University of Bucharest. He is currently a student at the Informatics

faculty of the University of Bucharest. He is currently working at Computer

Science Research Institute in Bucharest - ICI - as a research assistant and is

involved in Artificial Intelligence. He is involved in Advanced Artificial

Intelligence Techniques in Science and Applied Fields project, which aims to

develop an advanced model for predicting neurological outcomes based on

neuroimaging and clinical data, using machine learning algorithms to improve diagnosis and

prognosis in various conditions neurological.

