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 Introduction 

Predicting Alzheimer's based on MRI 

(Magnetic Resonance Imaging) images is a 

promising area of medical research with the 

potential to revolutionize the diagnosis and 

treatment of this debilitating condition. MRI 

images provide detailed insight into the struc-

ture and functioning of the brain, allowing re-

searchers to identify early signs of Alzhei-

mer's disease with increased accuracy and 

sensitivity. Using machine learning and artifi-

cial intelligence algorithms, researchers can 

analyze the volume, shape and connectivity of 

different brain regions in MRI images to de-

tect changes associated with Alzheimer's dis-

ease. This approach can identify subtle abnor-

malities in brain structure that may be early 

indicators of cognitive decline associated with 

the disease. 

However, it is important to emphasize that the 

prediction of Alzheimer's based on MRI im-

ages is still in the research and development 

stages [1]. More studies and validation are 

needed to confirm the accuracy and reliability 

of these diagnostic techniques. Ethical and 

privacy issues also need to be considered re-

garding the use of medical data and artificial 

intelligence algorithms in medical practice. 

Despite the challenges and ethical questions, 

advances in MRI imaging and artificial intel-

ligence promise to offer significant opportuni-

ties for the early diagnosis and management of 

Alzheimer's disease [2], which could lead to 

significant improvements in the quality of life 

of patients and their families. 

In this paper, two experiments will be done for 

Alzheimer predictions using AI with public 

data. In what is presented, it is clearly revealed 

that AI is in an active phase of research and 

development and that this field will revolu-

tionize the way these conditions are diag-

nosed, treated and managed [3].  

In our experiments, for Alzheimer's prediction 

we will use MRI images. Work is done in the 

Google Colab environment, which offers 

many advantages for developing and running 

Python code, especially in the areas of ma-

chine learning, deep learning and data analy-

sis.  Google Colab also offers free access to 

powerful computing resources (including 

GPU graphics processors, TPU tensor proces-

sors that can significantly speed up the train-

ing time of machine learning models. Since 

these experiments were team-based, Google 

Colab (via Google Drive) enabled collabora-

tion on code development and data access. 

Furthermore, Google Colab comes pre-loaded 
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with a number of popular Python libraries and 

packages, such as TensorFlow, Keras, NumPy 

and Pandas, facilitating rapid development 

and experimentation and thus  

eliminating the need to install and configure 

software on local devices. 

In the first experiment, we’ll use the pre-

trained VGG19 model, which is a convolu-

tional neural network (CNN) model devel-

oped by the Visual Geometry Group (VGG) at 

the University of Oxford. This architecture 

has been trained on a massive set of images 

from the ImageNet database. VGG19 is 

known for its simplicity and depth, it is often 

used as a pre-trained model, has 19 layers, in-

cluding 16 convolutional layers and 3 fully 

connected layers. The depth of the network is 

one of its distinguishing features and is known 

for its ability to capture complex details from 

images. The Google Colab environment in 

which we worked, helped us cope with the 

high computational demands required by this 

architecture. What is important to understand 

in these experiments is that instead of training 

a neural network built by us from scratch, a 

pre-trained model is used. This model has 

weights updated previously with large da-

tasets from ImageNet (ImageNet data). So, in 

our experiment we do not want to update the 

weights of the lower layers during the training 

operation and therefore they will be frozen. 

The top layers are to be eliminated and re-

placed with custom layers. Some pieces of 

code later on will make this clarification: 

 
include_top=False together with layer.trainable = False. 

  

It does not make sense to update the base 

VGG19 model weights because they have al-

ready been updated with large datasets. The 

lower layers of the network have learned from 

these large datasets and only the upper layers 

(i.e. the fully connected ones) are trained in 

the present experiment, on a public dataset 

that will be located on Google Drive. The net-

work used will therefore act as a fixed feature 

extractor and this process is called "transfer 

learning" [2]: what the VGG19 [5] network 

has learned (being trained on a huge ImageNet 

dataset), it will be transferred to the new task 

which is the Alzheimer's prediction.  

The following explains how the code was 

written. This code will classify the MRI im-

ages stored in the Alzheimer’s-Disease folder 

on Google Drive. To access this data (which 

are .jpg images), the Google Drive is mounted 

within the workspace of the current Colab 

notebook session: 

 
from google.colab import drive 

drive.mount('/content/drive') 

 

We’ll use TensorFlow which has become one 

of the most popular and influential machine 

learning platforms having artificial intelli-

gence libraries available. The TensorFlow 

module contains implementations for Keras, a 

high-level library for building and training 

neural networks. 

 

2 Components of TensorFlow's Keras API 

In order to build neural network, is necessary 

to import various components. First, we’ll 

start to import specific layer classes from Ten-

sorFlow and Keras module. Layer classes in 

deep learning frameworks (like TensorFlow 

and Keras) are fundamental building-blocks 

used to construct neural networks. Each layer 

class represents a specific type of mathemati-

cal operation or transformation that can be ap-

plied to the input data to produce output data. 

These layers are organized sequentially to 

form the architecture of the neural network. 

Layer classes abstract away the complexity of 

implementing neural network components 

such as neurons, activation functions and 

weight matrices. Instead of manually coding 

these components, we can use pre-imple-

mented layer classes, which simplifies the 

process of building neural networks: 
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from tensorflow.keras.layers import Input, Lambda, Dense, Flatten, AveragePooling2D, 

Dropout 

 

Input layer is used to instantiate a Keras tensor 

[3] , Lambda layer is used to implement cus-

tom operations or functions, Dense layer is 

used as a fully connected layer for output in 

classification tasks, Flatten layer is used to 

flatten the input tensor into a one dimensional 

array, a layer to perform 2D average pooling 

operation over the input data, an Average-

Pooling2 layer and the Dropout layer to pre-

vent overfitting through regularization tech-

nique (randomly sets a fraction of input units 

to zero during training).  

Having now the high-level interface for con-

structing our architecture of the neural net-

work, we need to import several modules and 

functions from TensorFlow and Keras, which 

are useful for working with deep learning 

models, especially convolutional neural net-

works (CNNs). One of the fundamental build-

ing-block for defining and organizing neural 

network architectures is the Model class. The 

Model class allows us to compose neural net-

work architectures by specifying the input and 

output layers. It provides a high-level inter-

face for defining and managing this hierar-

chical structure, making it easy to conceptual-

ize and implement complex architectures. 

Also, the Model class provides built-in meth-

ods for training and evaluating the model on 

training, validation and test data. It abstracts 

away the details of the training loop, including 

forward and backward passes, parameter up-

dates and performance metrics calculation, 

simplifying the process of training and evalu-

ating neural networks. Considering that we 

will address the transfer learning process in 

this paper, it is worth mentioning that Model 

class facilitates transfer learning and fine-tun-

ing by providing methods for freezing and un-

freezing specific layers or groups of layers, as 

we’ll do in our experiments: 

 
from tensorflow.keras.models import Model 

  

Next, we’ll import the function load_model 

from TensorFlow or Keras because we’ll use 

and load a pre-trained model. Also, this func-

tion allows us not only to load pre-trained 

models, but also can serve as a starting point 

for transfer learning, saving time and compu-

tational resources. It must be said that 

load_model function [4] abstracts away the 

details of loading and initializing neural 

network models from saved files (the pre-

trained model will be saved in a file format 

supported by the framework, typically in 

HDF5 format). The function handles the pro-

cess of reconstructing the model architecture 

and loading the trained weights and other con-

figuration parameters, making it easy to use 

saved models with minimal code: 

 
from tensorflow.keras.models import load_model 

 

As was mentioned earlier, we decided to use 

VGG19[5] in our experiments. Therefore, we 

need to import this pre-trained model (trained 

on the ImageNet dataset, a large dataset 

containing millions of labeled images across 

thousands of categories) provided by Tensor-

Flow: 

 
from tensorflow.keras.applications import VGG19 

 

Before feeding our data into VGG19 model, it 

is necessary to apply some pre-processing op-

erations which typically involve normalizing 

the pixel values of the input images to ensure  

they are in the correct range expected by the 

model. For doing this, the preprocess_input 

function is used specifically designed for the 

VGG19 model: 
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from tensorflow.keras.applications.vgg19 import preprocess_input 

 

Considering that we are working with images, 

we need to import the image module from 

TensorFlow's Keras preprocessing utilities. 

The image module provides various functions 

and classes. Here are some common tasks that 

we can perform using the image module:  

• Loading Images: The load_img() function 

can be used to load images from disk into 

Python variables. 

• Resizing Images: The img_to_array() 

function converts images loaded using 

load_img() into NumPy arrays, and the ar-

ray_to_img() function converts NumPy 

arrays back into images. You can also use 

the resize () function to resize images to a 

specific size. 

• Data Augmentation [7]: The ImageDat-

aGenerator class provides methods for 

performing data augmentation, such as 

random rotations, shifts, flips, and zooms. 

Data augmentation is commonly used to 

increase the diversity of the training data 

and improve the robustness of deep learn-

ing models. 

• Preprocessing for Models [8]: Pretrained 

deep learning models often require input 

images to be preprocessed in a specific 

way before making predictions. The pre-

process_input() function applies prepro-

cessing operations to input images to en-

sure that they are compatible with a partic-

ular model's requirements. 

 
from tensorflow.keras.preprocessing import image 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

As it was mentioned before, only the fully 

connected layers at the end of the network are 

to be trained with our custom data consisting 

of 500 RMN images. These fully connected 

layers are responsible for learning high-level 

features from the raw pixel data provided as 

input. So, doing training only for the fully 

connected layers with custom data, we can 

adapt the model to our specific task or dataset 

while benefiting from the generalization 

power of the pre-trained convolutional layers. 

In other words, the learned representations of 

the convolutional base layers are preserved. It 

was imported the pre-trained VGG19 model 

discussed earlier and also the image which 

provides functions and utilities for working 

with images during pre-processing. The class 

ImageDataGenerator is used for generating 

batches of images during the training, includ-

ing applying data augmentation to improve 

the model's generalization. Also, we’ll import 

necessary libraries and functions for evaluat-

ing and visualizing the performance of ma-

chine learning models, particularly classifica-

tion models. They allow for the computation 

of metrics such as confusion matrix, ROC 

(Receiver operating characteristic) curve and 

AUC-ROC score (Area under the ROC 

Curve), as well as for creating visualizations 

using Seaborn and Matplotlib [5]: 

 
from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score 

import seaborn as sns 

import numpy as np  

import matplotlib.pyplot as plt 

 

The confusion matrix is particularly useful for assessing the performance of a classification 

algorithm when the true values of the target variable are known. It provides a more detailed 

understanding of how well the model is performing in terms of different types of errors it makes. 

The numpy is a fundamental package for scientific computing with Python, the Seaborn library 

(sns) is a data visualization library based on Matplotlib which make drawings and informative 

statistical graphics. Pyplot is a module within Matplotlib that provides a MATLAB-like plotting 

interface. 
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3 Images pre-processing, visualization and 

construction of the final model 

Next, the data must be pre-processed so the 

path to the data is provided for this task. 

Also, we’re using the glob function to search 

for all files within these directories. The * 

wildcard character is used to match any file 

name in the directories. The variable Non-

Demfiles and Demfiles will contain lists of 

file paths corresponding to the files found in 

the directories specified by nondement_path 

and dement_path, respectively. 
 

dement_path = '/gdrive/My Drive/Alzheimer_Project/train/MildDemented' 

nondement_path = '/gdrive/My Drive/Alzheimer_Project/train/NonDemented' 

 

NonDemfiles = glob( nondement_path +'/*' ) 

Demfiles = glob( dement_path + '/*' ) 

 

Iterating through these two sets of image files, 

Demfiles and NonDemfiles, we are perform-

ing the following steps: 

• Reading the image using OpenCV's 

cv2.imread() function. 

• Converting the colour space from BGR to 

RGB using cv2.cvtColor(). 

• Resizing the image to a fixed size of 

229x229 pixels using cv2.resize(). 

• Appending the resized image to either 

Dem_images or NonDem_images based 

on whether the file belongs to the "De-

mented" or "NonDemented" category. 

• Appending the corresponding label ("De-

mented" or "NonDemented") to either 

Dem_labels or NonDem_labels. 

This process prepared the dataset in order to 

be categorized as either "Demented" or 

"NonDemented". After running the code bel-

low, we'll have two lists: 

• Dem_images: Contains resized RGB im-

ages categorized as "Demented". 

• Dem_labels: Contains corresponding la-

bels ("Demented") for the images in 

Dem_images. 

And similarly, we'll do with NonDem images. 

These lists will be used for training our model, 

with the images as input features and the la-

bels as target values: 

 
Dem_labels = [] 

NonDem_labels = [] 

Dem_images=[] 

NonDem_images=[] 

for i in range(len(Demfiles)): 

  image = cv2.imread(Demfiles[i])  

  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  

  image = cv2.resize(image,(229,229))  

  Dem_images.append(image)  

  Dem_labels.append('Demented')  

for i in range(len(NonDemfiles)): 

  image = cv2.imread(NonDemfiles[i]) 

  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

  image = cv2.resize(image,(229,229)) 

  NonDem_images.append(image) 

  NonDem_labels.append('NonDemented') 

 

To have some visuals, we are using plot_im-

ages function to visualize a grid of images [6]. 

It takes a list of images (images) and a title 

(title) as input, and then plots these images in 

a grid layout. 

 
def plot_images(images, title): 

    nrows, ncols = 5, 8 

    figsize = [10, 6] 

    fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize, facecolor=(1, 

1, 1)) 

    for i, axi in enumerate(ax.flat): 

    axi.imshow(images[i]) 
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        axi.set_axis_off() 

 

    plt.suptitle(title, fontsize=24) 

    plt.tight_layout(pad=0.2, rect=[0, 0, 1, 0.9]) 

    plt.show() 

plot_images(Dem_images, 'Demented Alzheimers Scan') 

plot_images(NonDem_images, 'NonDemented Alzheimers Scan') 

 

In figure 1 is presented a grid of images spe-

cific to Demented Alzheimers and 

NonDemented Alzheimers scan: 

 

 
 

Fig. 1. A grid of images with the specified title 

 

Normalizing pixel values to the range [0, 1] 

can help improve the training process and 

convergence of neural networks [7]. By divid-

ing each pixel value by 255, we're scaling the 

values to be in the range [0, 1], as the original 

pixel values typically range from 0 to 255 (as-

suming 8-bit color depth). 

 
Dem_images = np.array(Dem_images) / 255 

NonDem_images = np.array(NonDem_images) / 255 

 

We mentioned that the images we are working 

with (and which constitute the training da-

taset) are divided in two classes/categories: 

with and without dementia, as you can guess 

from the names of the folders that contain 

them. The features and the label of each photo 

are contained in variables X_train (for fea-

tures) and y_train (for labels) which are vec-

tors/arrays input data. The X_train represent 

the input features or attribute of the data (is a 

matrix of pixel values) and y_train contains 

the corresponding labels for the images in 

X_train, indicating their class or category.  

Typically, when we have dataset with input 

features (X) and corresponding labels or target 

variables (y), we want to split it into separate 

sets for training your model and testing its per-

formance. A commonly function used in ma-

chine learning to do this is train_test_split. 

Dem_images represents the features (input 

data, images) associated with demented data 

and Dem_labels are the corresponding labels 

(output data, class labels) associated with the 

demented data: 

 
Dem_x_train, Dem_x_test, Dem_y_train, Dem_y_test = train_test_split( 

    Dem_images, Dem_labels, test_size=0.2) 

 

And for non_demented data: 

 
NonDem_x_train, NonDem_x_test, NonDem_y_train, NonDem_y_test = train_test_split( 

    NonDem_images, NonDem_labels, test_size=0.2) 

 

The parameter test_size=0.2 specifies that 

20% of the data will be reserved for testing, 

while the remaining 80% will be used for 

training. After splitting the data, we have the 
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following variable: 

Dem_x_train contains the features (images) of 

the demented data used for training, 

Dem_x_test contains the features (images) of 

the demented data used for testing, 

Dem_y_train contains the corresponding la-

bels of the demented data used for training, 

Dem_y_test contains the corresponding labels 

of the demented data used for testing. Simi-

larly, the non-demented data split process will 

take place. The resulting data can now be used 

for training and for evaluating machine learn-

ing models separately on each dataset. The 

data preparation (preprocessing step) continue 

with concatenation tasks resulting new varia-

bles: 

 
X_train = np.concatenate((NonDem_x_train, Dem_x_train), axis=0) 

X_test = np.concatenate((NonDem_x_test, Dem_x_test), axis=0) 

y_train = np.concatenate((NonDem_y_train, Dem_y_train), axis=0) 

y_test = np.concatenate((NonDem_y_test, Dem_y_test), axis=0) 

 

The first line concatenates the features (input 

data, images) from both the dem 

(Dem_x_train) and non-dem (Non-

Dem_x_train) training sets along the specified 

axis (axis=0 indicates concatenation along the 

rows). The resulting X_train contains the 

combined features for training. Similarly, 

we'll do with Training labels (y_train), with 

Testing data (resulting X_test) and with Test-

ing labels (y_train). After that, is necessary to 

binarize the labels converting them into binary 

representation. Then, the function to_categor-

ical from Keras is applied to convert the bina-

rized labels into one-hot encoded vectors[8]. 

 
y_train = LabelBinarizer().fit_transform(y_train) 

y_train = to_categorical(y_train) 

 

y_test = LabelBinarizer().fit_transform(y_test) 

y_test = to_categorical(y_test) 

 

The plotting process shows the images from 

Table 2. 

 
plot_images(Dem_x_train, 'X_train') 

plot_images(Dem_x_test, 'X_test') 

 

In figure 2 is presented a grid of images with the variable X_train and X_test: 

 

  
Fig. 2. A grid of images with the variable name as title 

 

We are now ready to build a new neural net-

work model for classification using transfer 

learning with the VGG19 architecture as a 

base. 

  
VGGmodel = VGG19(weights="imagenet", include_top=False, 

    input_tensor=Input(shape=(229, 229, 3))) 
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This line creates an instance of the VGG19 

model using pre-trained weights from the 

ImageNet dataset (weights="imagenet"). It 

sets include_top=False to exclude the fully 

connected layers at the top of the VGG19 net-

work, as these will be replaced with custom 

layers [9]. The input_tensor parameter defines 

the shape of the input data, which is expected 

to be an image with dimensions (229, 229, 3) 

(height, width, channels). We need now to de-

fine additional layers to be added on top of the 

VGG19 base model: Flatten layer is used to 

flatten the output tensor from the VGG19 base 

model, Dropout layer is applied with a drop-

out rate of 0.4 to prevent overfitting, Dense 

layer with 2 units and softmax activation func-

tion. This is added as the output layer for bi-

nary classification (2 classes):  

 
outputs = VGGmodel.output 

outputs = Flatten(name="flatten")(outputs) 

outputs = Dropout(0.4)(outputs) 

outputs = Dense(2, activation="softmax")(outputs) 

 

It is time to construct the final model by spec-

ifying the inputs (defined by the input layer of 

the VGG19 model) and the outputs (defined 

by the custom layers): 

 
model = Model(inputs=VGGmodel.input, outputs=outputs) 

 

As was mentioned, only the custom layers 

added on top of the VGG19 model will be 

trained. So, we’ll loop through all the layers 

of the VGG19 base model to set them to non-

trainable, freezing their weights during train-

ing. 

 
for layer in VGGmodel.layers: 

    layer.trainable = False 

 

The final model needs to be compiled specify-

ing the loss function (categorical_crossen-

tropy) for multi-class classification, optimizer 

(adam), and evaluation metric (accu-

racy)[10]: 

model.compile( 

        loss='categorical_crossentropy',  

        optimizer='adam',  

        metrics=['accuracy'] 

) 

The next step is to get the pre-trained weights 

for the VGG19 model from the TensorFlow 

website [11]. The message "Downloading 

data from..." indicates that the weights file is 

being fetched from the specified URL 

(https://storage.googleapis.com/tensor-

flow/keras-applica-

tions/vgg19/vgg19_weights_tf_dim_order-

ing_tf_kernels_notop.h5). For this, we’ll 

download a file with .h5 extension called 

vgg19_weights_tf_dim_ordering_tf_ker-

nels_notop.h5. The file contains the pre-

trained weights for the VGG19 model without 

the top (fully connected) layers. This file is 

used for transfer learning with the VGG19 ar-

chitecture, as it provides a starting point for 

training a new model on a different dataset 

(our own dataset) for predicting Alzheimer. 

Once the download is complete, the weights 

will be stored locally on our system and can 

be used to initialize the VGG19 model in our 

code. The line of code: 

 

model.summary() 

 

gives us the architecture of the model (Fig.3), 

with layers displayed in sequence from input 

to output, layer types, output shapes and the 

number of parameters in each layer. 
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Fig. 3. The architecture of the VGG19 model 

 

4 Training the model and predicting on the 

test data 

The training will be made using the fit method 

(from Keras) with the observation that our 

training data is augmented on the fly and put 

it in the train_aug object [12]. This technique 

is used to artificially increase the size of our 

training dataset by applying various transfor-

mations (random transformations such as ro-

tation, flipping and shifting) to the input data 

in order to improve the generalization and ro-

bustness of the trained model. The line of code 

for starting the training is: 

 
history = model.fit(train_aug.flow(X_train, y_train, batch_size=batch_size), 

                    validation_data=(X_test, y_test), 

                    validation_steps=len(X_test) / batch_size, 

                    steps_per_epoch=len(X_train) / batch_size, 

                    epochs=epochs) 

 

The fit method trains the model on the training 

data (X_train and y_train) using the specified 

parameters and evaluates its performance on 

the validation data (X_test and y_test, features 

and labels). It can be observed that the valida-

tion was done with test data (X_test) to which 

labels are known. In this way the results can 

be checked/validated. Test data it will be used 

again (only once) on the final model, which is 

completely trained with training data and val-

idated with validation data sets. It should be 

specified that the test data was never seen by 

the model in the learning operation. During 

training, the model's weights are updated iter-

atively using an optimization algorithm 

(Adam optimizer [13]) to minimize the speci-

fied loss function (categorical cross-entropy). 

The training progress is monitored and rec-

orded in the history object, which can be used 

for visualization and analysis after training is 

complete. The train_aug object contains the 

new training samples obtained after data aug-

mentation by slightly modifying the existing 

ones. The flow operation generates batches of 

augmented training data (X_train and y_train) 

in real-time. The number of steps is calculated 

based on total number of images divided by 

the batch size (epochs = 500 and batch_size = 

64). 

During the training process, after each epoch 

(or a specified number of batches), the model's 

performance is evaluated on the validation 

data. This evaluation provides insights into 

how well the model is able to generalize to un-

seen data and helps identify whether the 
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model is overfitting in the training process. 

The iterations are taking place over the entire 

training dataset. In figure 4, can be seen the 

progress of training and validation processes, 

together with the results: average loss over all 

training samples in the current batch (loss), 

the accuracy of the model on the current batch 

of training samples (accuracy), the average 

loss over all validation samples (val_loss) and 

the accuracy of the model on the current batch 

of validation samples (val_accuracy). In the 

figure below, it can be seen the final epoch 

(epoch 500) with the final training accuracy 

and the final validation accuracy: 0,94 and 

0,88. These updates help monitor the perfor-

mance of the model during training and pro-

vide insights into its learning behavior and 

convergence. 

 

 
Fig. 4. The training and validation processes 

 

Using the function save in Keras we are now 

saving the entire model (architecture, weights, 

and training configuration) to a file in the Hi-

erarchical Data Format 5 (HDF5) format. This 

allows us to store the trained model for later 

use, deployment, or sharing with others. 

Here's how the function works [4]: 

 
model.save('AD_Model_VGG19.h5') 

 

We can then load this saved model using the 

keras.models.load_model() function to reuse 

it for inference, evaluation or further training: 

 
model = load_model('AD_Model_VGG19.h5') 

from tensorflow.keras.models import Model, load_model 

 

Please note that we were able to load this 

model because we imported initially, at the 

start of this programme, the load_model func-

tion from tensorflow.keras.models. 

Having the model (already trained), we are 

ready to use it and obtain predictions from it 

on the test data (X_test) [14]. It’s better to 

specify the batch size to help control memory 

usage and computation time:  

 
y_pred = model.predict(X_test, batch_size=batch_size) 

 

After executing this line of code, y_pred will 

contain the predicted outputs (or probabilities) 

for each sample in the test dataset. These pre-

dictions can then be further analyzed, evalu-

ated, or compared with the ground truth labels 

(y_test) to assess the performance of the 

model.  
Our next intention is to visualize the predic-

tions made by our model for a subset of the 

test data (the first 9 samples in the test da-

taset). We are therefore looping through the 
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selected predictions, display the correspond-

ing images and add titles to the plots 

indicating the predicted probabilities of being 

Demented or NonDemented: 

 
prediction=y_pred[1:10] 

for index, probability in enumerate(prediction): 

  if probability.item(0) > 0.5: 

        plt.title('%.2f' % (probability.item(0)*100) + '% Demented') 

  else: 

        plt.title('%.2f' % ((1-probability.item(0))*100) + '% NonDemented') 

  plt.style.reload_library 

  plt.imshow(Dem_images[index]) 

  plt.show() 

 

 
Fig. 5. The predictions 

 

In figure 5 is presented the visualization of 

predictions. 

 

5 Various visualizations and graphs 

The ROC curve illustrates (as in figure 6) the 

performance of our binary classification 

model [15]. A perfect classifier would have a 

curve that goes straight up to the top-left 

corner: 100% sensitivity (true positive rate) 

and 100% specificity. The diagonal line from 

the bottom-left to the top-right reflects ran-

dom guess. In general, the closer the ROC 

curve is to the top-left corner, the better the 

classifier is at distinguishing between the two 

classes. The code for ROC curve visualiza-

tion is: 

 
y_pred_bin,y_test_bin=None,None 

y_pred_bin = np.argmax(y_pred, axis=1) 

y_test_bin = np.argmax(y_test, axis=1) 

 

fpr, tpr, thresholds = roc_curve(y_test_bin, y_pred_bin) 

auc = roc_auc_score(y_test_bin, y_pred_bin) 

print('AUC: %.3f' % auc) 

plt.plot(fpr, tpr) 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.0]) 

plt.rcParams['font.size'] = 12 

plt.title('ROC curve for our model') 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.savefig('VGG19_ROC.png') 

plt.grid(True) 

 

In figure 6 can be seen the resultant ROC curve: 
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Fig. 6. The ROC curve 

 

In order to plot a Confusion Matrix, we’ll de-

fine a function called plot_confusion_matrix 

and and we’ll use the confusion_matrix func-

tion with the following arguments: 

• y_test_bin contains the true labels,  

• y_pred_bin contains the predicted labels. 
The normalize parameter determines whether 

to normalize the confusion matrix or not, 

based on the value of the normalize argument 

passed to the function: 

 
def plot_confusion_matrix(normalize): 

  classes = ['DEM','NONDEM'] 

  cn = confusion_matrix(y_test_bin, y_pred_bin,normalize=normalize) 

 

We intend to plot the confusion matrix as a 

heatmap using the seaborn library. We’ll save 

the plot as an image file named 

'VGG19_Confusion_Matrix.png', and we’ll 

display the plot on the screen (figure 7):  

 
sns.heatmap(cn,cmap='plasma',annot=True) 

  plt.xticks(tick_marks, classes) 

  plt.yticks(tick_marks, classes) 

  plt.title('Confusion Matrix') 

  plt.ylabel('True label') 

  plt.xlabel('Predicted label') 

  plt.savefig('VGG19_Confusion_Matrix.png') 

  plt.show() 
print ('Confusion Matrix fara Normalizare') 

plot_confusion_matrix(normalize=None) 

 

print('Confusion Matrix cu Normalizare') 

plot_confusion_matrix(normalize='true') 

 
Fig. 7. Confusion Matrix without normalization 
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Reading the matrix:  

• The model had 77 good predictions for 

Demented samples (True positive) from 

78 samples (where 1 was a wrong predic-

tion of being Demented (False positive).  

• The model predicted wrong 23 samples as 

being Demented (False positive) and has 

good prediction of 99 samples of being 

non-demented (True negative) from 122. 

The total samples of positive class (Dem) 

is 78 and the total samples for negative 

class (NonDem) is 122. The total of sam-

ples (test set) is 200. 

Applying the formula for the Accuracy from 

the Confusion Matrix, accuracy is the number 

of samples correctly classified out of all the 

samples present in the test set: 

(77+99)/(77+23+1+99)= 176/200= 0.88. 

Using the classification_report function from 

scikit-learn we are generating a comprehen-

sive report of the classification performance, 

including precision, recall, F1-score, and sup-

port for each class (Figure 8): 

 
from sklearn.metrics import classification_report 

print(classification_report(y_test_bin, y_pred_bin)) 

 

 
Fig. 8. The Classification report 

 

Continuing to visualize the results based on 

the information captured in the history object, 

in the table 1 the graphs are drawn for the 

training and testing accuracy, the training and 

testing loss of the neural network used here. 

The loss quantifies the difference between the 

predicted output of the model and the actual 

target values. The goal of training a machine 

learning model is to minimize this loss, which 

essentially means making the model’s predic-

tions as close to the actual target values as pos-

sible.  

 

Table 1. Graphs of accuracy and loss evolution through epochs 
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6 VGG19 versus Inception_V3 

In the above experiment it was seen how, by 

using a pre-trained model (which involves 

training the model on a large dataset such as 

ImageNet (containing millions of labeled 

images), the results are impressive. We now 

propose to choose another model that has been 

widely adopted in the computer vision com-

munity for its efficiency and effectiveness in 

various tasks: Inception_v3.  

 

Table 2. VGG19 versus Inception_v3   

 
 

One of the distinctive features of the Inception 

architecture is the use of inception modules 

which are modules that perform parallel con-

volutions at different scales and concatenate 
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their results. These modules help capture fea-

tures at different levels of abstraction effi-

ciently. Due to its pre-trained weights on large 

datasets like ImageNet, Inception_v3 can be 

utilized for transfer learning, the same we did 

previously with VGG19. Transfer learning in-

volves taking a pre-trained model and fine-

tuning it on a smaller, domain-specific dataset 

(in our case was a set of RMN images) to 

adapt it to a particular task. We will apply the 

same code but with some changes which are 

reflected in the Table 2. After running the new 

code involving Inception_v3 pre-trained 

model, the results are even better: the valida-

tion accuracy is higher than when we used 

VGG19. Important is to understand the con-

cept of using these 2 models, to understand 

how and why use the pre-trained weights 

(without the weights from the fully connected 

layers on top) which are downloaded from 

Google Cloud Storage. The names of these 

files have the .h5 extension which indicates 

that it's stored in the Hierarchical Data Format 

version 5 (HDF5), a common format for stor-

ing large numerical datasets. Also, the names 

of these files containing the pre-trained 

weights, have “notop“ indicative pointing 

clearly the fact that the top fully connected 

layers were eliminated:  
• vgg19_weights_tf_dim_ordering_tf_ker-

nels_notop.h5  

• inception_v3_weights_tf_dim_order-

ing_tf_kernels_notop.h5. 

 

7 State of the Art 

A couple of years ago, 2 researchers from Im-

perial College London and from the Depart-

ment of Biomedical Engineering, made their 

own experiences in predicting AD using 3D 

images and 3D CNN’s. As opposed to 2D im-

ages, 3D images contain volumetric data, cap-

turing spatial structures and relationships in 

three dimensions [20]. Together with 3D 

CNN’s, these three-dimensional data capture 

spatiotemporal patterns providing richer in-

formation about the shape, size and spatial 

distribution of AD phenomena. While 2D im-

ages used in this work offer simplicity and 

ease of interpretation, 3D images provide 

richer spatial information and may lead to im-

proved accuracy and performance in tasks 

such as object recognition, segmentation and 

tracking, as they capture a more complete rep-

resentation of the underlying 3D scene. Going 

back to the experiences of the UK researchers, 

they obtained an accuracy of 95,39% using a 

combination of sparse autoencoders and con-

volutional neural networks. Their approach 

using 3D images and 3D convolutions (on the 

whole MRI image) yielded better perfor-

mance. However, 3D brain MRI is not availa-

ble in most clinical settings because 3D MRI 

sequences have longer acquisition times than 

two-dimensional (2D) MRI, which signifi-

cantly increase computational burden, stor-

age, and cost. Thus, the DL algorithms for di-

agnosing AD using 3D MRI may be difficult 

to apply to most brain MRI scans obtained in 

typical clinical settings.  

In 2021, a group of researchers from Bangla-

desh and India, presented a comparative anal-

ysis of Machine Learning algorithms to pre-

dict Alzheimer’s disease [21]. Even though 

Deep Learning algorithms have been used in 

this paper describing our experiments, both 

ML and DL can be used for predicting demen-

tia and the choice between choosing ML and 

DL depends on factors such as the size and 

complexity of the dataset, the availability of 

labelled data, computational resources and the 

expertise of the practitioners. In ML models, 

features or attributes used for training are 

manually designed and engineered by domain 

experts rather than being automatically 

learned from the data by the model itself, as in 

DL models. In their research, the engineers 

concluded that, with their particular dataset 

(provided by the Open Access Series of Imag-

ing Studies) the system got the best results us-

ing Support Vector Machine (SVM) as op-

posed to others ML algorithms such as logistic 

regression, decision tree and random forest. 

Their comparison table of models is presented 

in Table 3. 
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Table 3. Comparison table of ML models 

 
The study called “Generalizable deep learning 

model for early Alzheimer’s disease detection 

from structural MRIs” introduces a ground-

breaking AI-driven approach for early Alzhei-

mer's disease detection, leveraging 3D deep 

convolutional neural networks on structural 

MRIs [22]. The model showcases exceptional 

accuracy, with an impressive area-under-the-

curve (AUC) of 85.12% when distinguishing 

between cognitively normal subjects and 

those with mild cognitive impairment (MCI) 

or mild Alzheimer’s dementia. Additionally, 

it achieves an AUC of 62.45% in detecting 

MCI, a task known for its complexity. 

Its utilization of advanced AI techniques not 

only enhances diagnostic precision but also 

significantly expedites the process compared 

to conventional methods. Furthermore, the AI 

model demonstrates promising capabilities in 

predicting disease progression, leveraging its 

ability to autonomously learn and identify im-

aging biomarkers associated with Alzheimer's 

pathology. These remarkable findings under-

score the transformative potential of AI in rev-

olutionizing early diagnosis and facilitating 

more effective clinical interventions for Alz-

heimer's disease. 

Another study happened in Korea called 

“Deep learning-based diagnosis of Alz-

heimer’s disease using brain magnetic reso-

nance images” investigated the potential of a 

Korean-home-made convolutional neural net-

work (called VUNO Med-DeepBrain AD) for 

diagnosing AD using 2D brain MR images as 

input data (using T1-weighted magnetic reso-

nance imaging which is often used for brain 

imaging) [23]. The research involved 98 el-

derly participants aged 60 years or older from 

Seoul Asian Medical Centre and the Korea 

Veterans Health Service. Results showed ac-

curacy of 87.1%. In their experiments, they 

used Inception-v4, as opposed to Inception-v3 

employed in our experiments described in this 

paper. The Inception-v4 has more modules 

being the next generation of Inception-v3 pre-

trained models. In the end, their work and 

their results suggested that VUNO and his al-

gorithm could serve as a valuable tool for sup-

porting clinical decisions, particularly for 

physicians not specialized in Alzheimer dis-

ease, thereby improving the accessibility of 

AD diagnosis and treatment.  

 

7 Conclusions 

In this project, our specific tasks were Alz-

heimer’s disease prediction. Instead of build-

ing models from scratch, we leveraged pre-

trained models and transferred the knowledge 

learned from huge datasets. The pre-trained 

models served as powerful features extractors: 

the early layers of these models learn to detect 

low-level features like edges and textures 

while deeper layers learn more abstract fea-

tures like shapes and patterns. The top layers 

(which are typically fully connected layers) 

are fine-tuned with new training data (as we 

saw in our experiments) while the early layers 

(convolutional and pooling layers) are frozen, 

their weights were not updated retaining the 

learned representation. More than that, these 

models alleviate some of the computational 

resources burden because we only needed to 

fine-tune the models to our specific task with 

fewer resources and smaller dataset. When 

working with models like VGG19 and Incep-

tion_v3, we were able to find extensive docu-

mentation, tutorials and support in the deep 

learning community. However, using pre-

trained models, the fine-tuning requires care-

ful hyperparameters tuning and experimenta-

tion.  
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