
78 Informatica Economică vol. 27, no. 4/2023

Optimizing Performance of Distributed Web Systems

Marian ILEANA

National University of Science and Technology Politehnica Bucharest,

Pitești University Center, Romania

marianileana95@gmail.com

Distributed systems have been a hot topic of study in recent years. In general, a distributed

system is defined as a computer system implemented within a computer network in which both

software and hardware components located on computers within the network communicate and

coordinate their actions via messages. Optimizing the performance of distributed web systems

has become a top priority in the current context of technological evolution and the continuous

growth in the number of users and online traffic. These systems are fundamental to delivering

services and content to users worldwide, but the ever-increasing demands for availability and

scalability have brought new challenges. Finite state machines are a powerful and flexible

technique for modelling distributed systems using the Python language. Finite state machines

are popular for modelling distributed systems due to the fact that they represent an easy and

flexible way to represent these systems, and together with the Python language, they manage

to model complex systems. The two are used to illustrate complex system behaviour, communi-

cation between system nodes, node synchronization, error handling, and performance optimi-

zation. In this study, various strategies and techniques for optimizing their performance have

been analysed.

Keywords: Distributed Systems, Performance Optimization, Web Architecture, Scalability,

Load Balancing, Finite State Machine, Python

DOI: 10.24818/issn14531305/27.4.2023.06

Introduction

Nowadays, we live in an increasingly in-

terconnected digital age, and distributed web

systems play a major role in ensuring that

online services and applications operate at op-

timal capacity [1]. Architects, together with

software developers, are looking to optimize

these systems as performance and scalability

requirements continue to increase [2].

This article focuses on optimizing the perfor-

mance of these systems, offering innovative

strategies and solutions to achieve maximum

efficiency and the best possible user experi-

ence. It will examine the main issues, such as

handling heavy traffic and managing real-time

data, and examine ways in which these issues

can be avoided.

Concepts such as scalable architecture, load

balancing, optimizing distributed databases,

and using the latest caching technologies to

speed up responses from the server to the us-

ers will be discussed. In addition, methods for

improving network latency and reducing

downtime will be examined.

By using the interpreted programming lan-

guage Python and its libraries, among the

most important are PyTransition and Mat-

plotlib. Using the free and open-source

PyTransition framework, one can manage

transitions or changes within a system, used to

define and counter how various states or

stages evolve and change [6]. Transitions

change as the network evolves. The Mat-

plotlib library is one of the most important vis-

ualization libraries of the Python program-

ming language, created to render the highest

quality graphs and charts [7].

Whether you are a student, a professor, an ar-

chitect about to design a major distributed sys-

tem for your company, or even a developer

with a web application in development. This

article aims to provide insight into perfor-

mance optimization approaches so that you

can achieve your efficiency goals and keep

your systems running smoothly in the dy-

namic environment of modern technologies.

1

Informatica Economică vol. 27, no. 4/2023 79

2 Literature review

In order to see the dynamics of the subject of

distributed web systems within the specialized

literature, a brief analysis of the literature was

carried out that focuses on the subject of dis-

tributed web systems, a topic debated by pre-

vious authors.

In carrying out this empirical investigation,

the scientific database Dimensions.ai was

used as a search space, and the results returned

by it were processed using the VOS Viewer

application in order to be able to identify the

key authors found in the research.

Using the application methodology, a study

was conducted. Authors who published on the

topic "distributed web systems" were

searched, and the results were gathered by a

network of authors, as illustrated in Figure 1..

The obtained results included a total of 9006

authors, these are the authors with publica-

tions on this subject; for an author to be re-

vealed, the condition was added that his name

appear in at least five publications. Thus, a

number of 102 authors who meet this thresh-

old were filtered, based on which the graph in

Figure 1 was created.

Fig 1. Result of the bibliographical study

The authors expose some of the most common

problems of distributed web systems, includ-

ing [4]:

1. Communication between components

2. Data consistency

3. Failure tolerance

4. Management of resources

5. Security and privacy

6. Synchronization

7. Management of the transaction

8. Performance

9. Scalability

10. Administration and monitoring

The literature on distributed web systems pro-

vides a deep understanding of the technologi-

cal advances and the problems that may arise

during the study, research, and management

of such systems with a high degree of com-

plexity.

This branch of literature brings to the fore how

distributed architectures have become essen-

tial to the smooth functioning of the online

platforms we are all used to, including e-com-

merce, social networks, and web services.

The literature in this field examines concepts

such as horizontal scalability, traffic

80 Informatica Economică vol. 27, no. 4/2023

management and processing methods, load

distribution, and ensuring redundancy to man-

age availability and performance in the face of

fluctuating user demands. In addition, it fo-

cuses on concrete issues such as data synchro-

nization, data security, and error resolution in

legacy infrastructures. In general, the litera-

ture brings to the attention of the reading pub-

lic how distributed web systems have become

essential in modern society.

The contemporary online environment is the

basis of modern society. It highlights ongoing

efforts to address and resolve the complex is-

sues and challenges posed by this essential

technology.

A mechanism for assessing the scalability of a

distributed system was proposed in a study by

Jogalekar and Woodside in 2000. They con-

cluded that the system must be scalable, which

means that it must be able to be modified in

different configurations and dimensions,

which is the most important element of a dis-

tributed system [1]. In their paper, it is pointed

out that a system is infinitely scalable if the

degradation of the response time is allowed, is

directly proportional to the number of users,

and is included in the scalability function.

In the book "Designing Data-Intensive Appli-

cations", M. Kleppmann brings to the reader’s

attention the design and construction of dis-

tributed web applications that can manage

large volumes of data. The author explores

concepts such as data storage, consistency,

scalability, and fault torrenting [3]. The book

provides a detailed analysis of the technolo-

gies needed to develop powerful and efficient

web platforms, such as distributed databases,

real-time messaging systems, and more. A bi-

ble of this field written by A. S. Tanenbaum

and M. van Steen, "Distributed Systems: Prin-

ciples and Paradigms". This draws attention to

the principles of distributed systems. The two

authors address areas such as inter-process

communication, resource distribution, defect

management, and, last but not least, data con-

sistency and coherence [4]. In addition, the

book covers important concepts such as ser-

vice-oriented architectures (SOA) and cloud

architectures.

"Distributed Systems: Concepts and Design"

by G. Coulouris, J. Dollimore, and T. Kind-

berg brings to the attention of the reading pub-

lic the essential ideas, technologies, and prin-

ciples of distributed systems. The authors

scrutinize distributed systems in terms of in-

ter-process communication, resource distribu-

tion, data security, and fault tolerance [5]. To

be able to illustrate how these concepts are ap-

plied to distributed web platforms, the book

provides appropriate examples and also brings

a number of case studies.

3 Model description

3.1. Initial Model: Web Distributed Sys-

tems Architecture

To provide a wide range of services and en-

gaging content to users who want memorable

online experiences, they need distributed web

systems. These are complex entities that are

made up of a network of interconnected serv-

ers. The performance that must be high is es-

sential to satisfying the diverse needs of users

who have a high degree of expectation regard-

ing the speed of the platform and the connec-

tion [1]. The high quality of their infrastruc-

ture determines the popularity of platforms

and stores that gravitate toward the virtual

sphere. By increasing quality, it is desired to

increase the level of consumer satisfaction and

extend the duration of interaction with the

platform, which directly leads to an increase

in the financial income of the respective vir-

tual business.

3.1.1 Performance Optimization Chal-

lenges

To provide users with a fast and secure expe-

rience, optimizing performance in distributed

web systems is a complex and essential pro-

cess. This means overcoming several key

challenges, such as [1]:

• Latency - Ensuring minimal delay in de-

livering content to users;

• Load Balancing - Distributing workload

evenly across servers;

• Caching - Keeping frequently accessed

data near users;

• Fault Tolerance - Maintaining system

availability in case of failures.

Informatica Economică vol. 27, no. 4/2023 81

Latency is the time it takes for data to travel

between the two actors, client and server, re-

sulting in increased web page load times.

Ways to reduce latency [1]:

• Networks for Content Delivery (CDN):

Content delivery networks allow content

to be stored on servers located in different

geographic locations so that users can con-

nect to the closest server.

• Optimization of resources and images:

Resizing and compressing images can

lead to shorter loading times and page

sizes; these methods can also be applied to

static resources.

• Reducing the number of HTTP requests:

Concatenation and code minification

methods are used to reduce the number of

HTTP requests by combining these re-

sources.

3.1.2 Load Balancing

Load balancing optimizes performance in dis-

tributed web systems. Load balancing evenly

distributes network traffic across multiple

servers, ensuring scalability, reliability, and

efficient resource utilization [1]. Techniques

like round-robin and weighted distribution

minimize response time and enhance system

performance. As can be seen in Figure 2, the

devices connect to the Internet, and between

the Internet and the servers, there is software

and hardware that correctly distributes the

traffic so as not to overload a certain server.

Fig 2. Load Balancing – Example

3.1.3 Caching

Caching is an effective technique for improv-

ing the performance of distributed web sys-

tems. By temporarily storing data or pre-com-

puted results in a fast-access area such as

cache memory, response times can be signifi-

cantly reduced [1]. Caching can be applied not

only at the level of individual servers but also

at the network or client level.

Caching can be applied to multiple levels of

distributed web systems. At the individual

server level, caching can represent the storage

of precomputed results from frequent queries.

This helps reduce the processing time of re-

quests from customers.

When talking about the network layer, cache

memory is used to store copies of data from

distributed servers [1]. This helps reduce net-

work traffic, as clients no longer have to con-

nect to each server to get the data they need.

Copies of pre-calculated data or results can be

stored at the client level. This helps to enhance

the user experience.

Caching is an effective technique that can be

successfully used to improve the performance

of distributed web systems [1]. By temporar-

ily storing data in a fast-access area, it signif-

icantly reduces the user's response time (Fig-

ure 3).

82 Informatica Economică vol. 27, no. 4/2023

Fig 3. Cache Definition

3.1.4 Content Delivery Networks

CDNs are geographically distributed net-

works of servers that optimize the delivery of

web content to users (Figure 4).

By caching and distributing data efficiently,

CDNs reduce latency and provide improved

performance and security [1].

Fig 4. Content Delivery Networks [11]

Geographic load balancing is a technique used

to distribute web traffic between multiple

servers located in different geographic re-

gions. This helps improve the performance of

web applications by reducing the distance data

travels and ensuring that users are served by

the server closest to them.

There are two main approaches to geograph-

ical load balancing in the specialized litera-

ture. DNS-based load balancing: This method

uses the Domain Name System (DNS) to

route requests to the nearest server. When a

user enters a URL into a browser, the DNS

server returns the IP address of the server clos-

est to the client.

HTTP-based load balancing: This method

uses HTTP headers to direct requests to the

closest available server. When the server re-

ceives a request, it examines the HTTP head-

ers to determine the user's location. The server

Informatica Economică vol. 27, no. 4/2023 83

will then forward the request to the server

closest to the user.

Geographical load balancing is the most effec-

tive way to improve the performance of web

platforms. The user experience is also im-

proved by reducing request latency.

The most important advantages of using geo-

graphic load balancing for scalable distributed

web systems are [2]:

• Improved performance: By distributing

web traffic across multiple servers, local

load balancing can help reduce the load on

each server. This can lead to better perfor-

mance, especially for web applications

that experience traffic spikes (times when

traffic increases suddenly).

• Reduced latency: By forwarding requests

to the server closest to the user, geo-

graphic load balancing can help reduce la-

tency. This can improve the user experi-

ence, especially for applications that re-

quire real-time data or interactions.

• Increased Availability: By distributing

web traffic across multiple servers, geo-

graphic load balancing helps increase the

availability of web applications. If one

web server goes down, other servers can

continue to serve requests.

• Improved scalability: By adjusting the ge-

ographic load, the scalability of web plat-

forms is improved. As the number of users

increases, additional servers can be added

to the load-balancing group.

The most common challenges in using load

optimization for scalable distributed web sys-

tems are [1]:

• Complexity: Geographical load balancing

can be a highly complex and difficult op-

eration to implement. It requires careful

planning and coordination; developers

must be careful that the load is distributed

evenly across all servers.

• Cost: Geographical load balancing re-

quires additional servers and network in-

frastructure, which can increase overall

costs.

• Management: Geographic load balancing

can be difficult to implement and manage

because it requires monitoring and cali-

bration to ensure that the load is evenly

distributed and that the system is operating

within parameters.

In most cases, geographic load balancing is a

valuable tool for improving the performance,

scalability, and availability of web applica-

tions. However, it is important to consider the

challenges of such an implementation.

3.2 Revised Model: Distributed Web Sys-

tems Using FSM

Using a finite state machine, we can model

distributed web systems. With the help of

FSMs, we can track the states that the system

goes through. Using the Python language to-

gether with PyTransition and Matplotlib, it is

possible to visualize the states that the distrib-

uted system goes through.

Starting from the following finite state ma-

chine. Transitions "Request1", "Request2",

and "Request3" that go from the "Idle" state to

the "Processing" state, and the "ErrorHan-

dling" transaction goes from the "Processing"

state to the "Error" state (Figure 5).

Fig 5. FSM modelling

84 Informatica Economică vol. 27, no. 4/2023

A finite state machine can be modelled in Py-

thon using the following code:

 1. from transitions import Machine
 2. import matplotlib.pyplot as plt
 3.
 4. class DistributedSystem:
 5. def __init__(self, name):
 6. self.name = name
 7. self.states = ['Idle', 'Processing', 'Error']
 8. self.transitions = [
 9. {'trigger': 'receive_request1', 'source': 'Idle', 'dest': 'Processing'},
10. {'trigger': 'receive_request2', 'source': 'Idle', 'dest': 'Processing'},
11. {'trigger': 'receive_request3', 'source': 'Idle', 'dest': 'Processing'},
12. {'trigger': 'process_request1', 'source': 'Processing', 'dest': 'Idle'},
13. {'trigger': 'process_request2', 'source': 'Processing', 'dest': 'Idle'},
14. {'trigger': 'process_request3', 'source': 'Processing', 'dest': 'Idle'},
15. {'trigger': 'error_handling', 'source': 'Processing', 'dest': 'Error'}
16.]
17. self.machine = Machine(model=self, states=self.states, transitions=self.transitions,
initial='Idle')

The function of drawing the obtained result is:

 1. def draw_fsm(self):
 2. G = nx.DiGraph()
 3. G.add_nodes_from(self.states)
 4. for transition in self.transitions:
 5. G.add_edge(transition['source'], transition['dest'], label=transition['trigger'])
 6.
 7. pos = nx.spring_layout(G)
 8.
 9. plt.figure(figsize=(8, 6))
10. nx.draw(G, pos, with_labels=True, node_color='lightblue', node_size=2000,
edge_color='gray', arrows=True)
11. nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'))
12. plt.title(f'FSM Graph - {self.name}', fontsize=12)
13. plt.tight_layout()
14. plt.savefig(f'fsm_graph_{self.name}.png', format='png')
15. plt.show()

The result obtained by modelling the system and calling the previously presented drawing func-

tion is presented in Figure 6.

Fig 6. The resulting diagram

Informatica Economică vol. 27, no. 4/2023 85

4 Reviewing process

The development and optimization of distrib-

uted web network systems have behind them

an exhaustive review process to be able to en-

sure the reliability, efficiency, and scalability

of the implemented solutions. Modelling the

behaviour of the system using finite state ma-

chines (FSM) using the libraries provided by

Python, PyTransition, and Matplotlib brings a

new approach to the design of such a system.

However, the effectiveness of such a system

must be carefully evaluated and validated.

By modelling from the previous point, we

want to bring into discussion another perspec-

tive that wants to improve the performance of

distributed web systems. With technological

change and the increased complexity of re-

quirements in the field of distributed web sys-

tems, the design and development processes

have become more important than ever [8]. In

search of new, more efficient methods with

higher scalability, developers eagerly em-

braced new methods and tools to be able to

turn their visions into reality.

In this case, a type of distributed web model-

ling is developed that is supported by modern

and innovative tools. Using these tools, devel-

opers are able to create a distributed web sys-

tem that successfully meets the needs of today

but also prepares the system for the demands

of the future. One of the defining aspects of

this approach is the adoption of finite state

machines (FSMs) as a way to represent the

complex behaviour of systems. In what was

previously described, these new types of de-

sign were examined, and the main tools that

can be used to support and define them were

presented, demonstrating their impact and

value in the design and development of new

distributed web systems.

Finite State Machines (FSMs) represent a

modern paradigm of system modelling. Finite

state machines have constantly evolved in var-

ious disciplines to become important tools in

the development and testing of complex sys-

tems. In traditional methods, distributed web

systems are built using complex graphs that

are often difficult to manipulate and scale. By

adopting FSM, developers can define system

behaviour in a structured and understandable

way. Each state of the FSM represents a dif-

ferent level of system operation, and transi-

tions between states represent changes from

one level to another.

Modern tools: Python, PyTransition, and Mat-

plotlib [6], [7]. Modern tools have played an

important role in the development of this

modelling system. The Python programming

language provides a powerful and versatile

framework for implementing finite state ma-

chines and operations associated with distrib-

uted web systems. Pytransition, a Python li-

brary specializing in managing finite state ma-

chines, provides developers with a set of tools

needed to define and manage transitions be-

tween states as well as control the behaviour

associated with each state. Matplotlib, another

Python library, completes the triangle of mod-

ern tools by providing advanced visualization

capabilities. With Matplotlib, developers can

create graphical representations of finite state

machines, making it easier to understand and

optimize the behaviour of distributed web sys-

tems [1].

The benefits of this approach. This modern

way of presenting a distributed web network

comes with a lot of advantages. The transpar-

ent nature of the finite state machine simpli-

fies the development and debugging pro-

cesses, while the graphical visualization pro-

vides a quick overview of the system's behav-

iour [9]. In addition, the system is highly mod-

ular, allowing developers to add and change

states and transitions easily as system require-

ments evolve as the number of users increases.

Modelling distributed web networks using

this new model, based on FSM and modern

tools such as Python, PyTransition, and Mat-

plotlib, represents a significant paradigm shift

in the field of complex systems development.

This approach emphasizes efficiency, scala-

bility, and creating sustainable systems that

meet future challenges through high adapta-

bility.

5 Conclusions

In this paper, strategies and approaches have

been explored to optimize the performance of

distributed web systems using finite state ma-

chine models. It has been demonstrated how

86 Informatica Economică vol. 27, no. 4/2023

the dynamic programming language Python

and the PyTransition library can be used to

create and manage such models, and the re-

sults obtained highlight the significant bene-

fits of these techniques in improving the per-

formance monitoring of distributed web sys-

tems.

By using finite state machines, it was possible

to capture the essential behaviour of our web

system, allowing critical performance aspects

to be identified and optimized. This enables

informed decisions about scalability, effi-

ciency, and resource utilization.

An FSM model was implemented in Python

using the PyTransition library, and the

graphics determining the behaviour of the

FSM were made with Matplotlib. It has been

demonstrated how, using this model, one can

create test cases that simulate different types

of web traffic. By implementing the two li-

braries, they allow the definition, simulation,

and analysis of the transition states of the sys-

tem with ease. The easy integration of Mat-

plotlib allows efficient visualization of the

system’s performance in the various proposed

scenarios, helping to identify potential weak

points and bottlenecks [10].

The obtained results show that FSM is an ef-

fective technique to optimize the performance

of a distributed web system. FSM can be suc-

cessfully used to model user and system be-

haviour as well as create test cases to identify

and fix performance issues.

Based on the obtained results, a significant

improvement in system performance was ob-

served when the optimization measures sug-

gested by the model analysis were applied.

This highlights the importance of using finite

state machines and modelling approaches us-

ing the Python language to achieve optimiza-

tion of distributed web systems.

Starting from the expertise accumulated for

the realization of this material, other research

directions that will improve distributed web

systems and from which future research can

start and expand in the following directions

are:

• Using FSM to Model User Behaviour and

Complex Web Systems;

• Development of test scenario automation

techniques using FSM;

• Using FSM to optimize system perfor-

mance under real traffic conditions.

In conclusion, this paper highlights the bene-

fits of using machines to optimize the perfor-

mance of distributed web systems. The inte-

gration of Python and the PyTransition and

Matplotlib libraries plays a significant role in

addressing and solving complex performance

and scalability challenges in such environ-

ments. Although this research has been suc-

cessfully accomplished, there is potential for

future research and improvements in the ap-

proaches and techniques used to meet the

changing needs of the increasingly complex

and demanding distributed web systems in the

modern world.

References

[1] P. Jogalekar and M. Woodside, “Evaluat-

ing the scalability of distributed systems,”

IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 11, no. 6, pp. 589–

603, Jun. 2000, doi: 10.1109/71.862209.

[2] M. Mansouri-Samani and M. Sloman,

“Monitoring distributed systems,” IEEE

Network, vol. 7, no. 6, pp. 20–30, Nov.

1993, doi: 10.1109/65.244791.

[3] M. Kleppmann, Designing Data-Intensive

Applications: The big ideas behind relia-

ble, scalable, and Maintainable systems.

2017. [Online]. Available:

http://repo.darmajaya.ac.id/4191/

[4] A. S. Tanenbaum and M. Van Steen, Dis-

tributed Systems: Principles and Para-

digms, 2nd edition. 2007. [Online]. Avail-

able: https://dl.acm.org/cita-

tion.cfm?id=1202502

[5] G. Coulouris and J. Dollimore, Distributed

Systems: Concepts and design. 1988.

[Online]. Available: http://cdk5.net/er-

rata/Errata.pdf

[6] Pytransitions, “GitHub - pytransi-

tions/transitions: A lightweight, object-

oriented finite state machine implementa-

tion in Python with many extensions,”

GitHub. https://github.com/pytransi-

tions/transitions

Informatica Economică vol. 27, no. 4/2023 87

[7] G. Moruzzi, “Plotting with Matplotlib,” in

Springer eBooks, 2020, pp. 53–69. doi:

10.1007/978-3-030-45027-4_3.

[8] V. Cardellini, M. Colajanni, and P. S. Yu,

“Geographic load balancing for scalable

distributed Web systems,” Proceedings

8th International Symposium on Model-

ling, Analysis and Simulation of Com-

puter and Telecommunication Sys-tems,

Nov. 2002, doi: 10.1109/mas-

cot.2000.876425.

[9] S. Mohapatra et al., “A Cross-Layer Ap-

proach for Power-Performance Optimiza-

tion in Distributed Mobile Systems,” 19th

IEEE International Parallel and Dis-

tributed Processing Symposium, Apr.

2005, doi: 10.1109/ipdps.2005.13.

[10] A. Ledmi, H. Bendjenna, and S. M.

Hemam, “Fault Tolerance in Distributed

Systems: A Survey,” 3rd International

Conference on Pattern Analysis and Intel-

ligent Systems (PAIS), Oct. 2018, doi:

10.1109/pais.2018.8598484.

[11] Wallarm, “What is Сontent Delivery Net-

work (CDN) How does it Work?,” Wal-

larm, Feb. 20, 2023. https://www.wal-

larm.com/what/what-is-content-delivery-

network.

Marian ILEANA graduated from the Faculty of Mathematics and Computer

Science of the University of Bucharest with a bachelor's degree in Computer

Science, in 2017. He obtained a research master's degree in Economic

Informatics, within the Bucharest University of Economic Studies in 2020, and

a professional master's degree in Databases and Web Technologies, within the

University of Bucharest. He is a PhD student in Computer Science at the

National University of Science and Technology Politehnica Bucharest, Pitești

University Center, since 2020. His current interests are in the development of finite state

machines, timed automata, distributed computing, and distributed web systems.

