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Introduction 

The aim of this study is to develop a 

predictive model for stock prices using time-

series analysis. The business objective is to 

identify volatility patterns and forecast stock 

prices based on historical data. Public datasets 

from Yahoo finance are utilized as the data 

source, which includes eight columns such as 

Open, High, Low, Close, Volume, Dividends, 

and Stock split. 

To implement the analysis, the necessary 

libraries are imported, and the specific stock 

for the analysis is defined. Historical data of 

Google stock from January 1, 2005, to 

October 8, 2021, is extracted. The initial step 

is to check the current volatility of the stock. 

In order to proceed this part, the percentage 

change between two close prices is calculated. 

The next stage involves utilizing the GARCH 

model to forecast the volatility of the stock. 

The parameters of the model are determined 

through the use of the partial autocorrelation 

function. Once the parameters are established, 

the model is constructed, and the predictions 

are made accordingly using ARIMA model 

[1]. 

Overall, the proposed methodology consists 

of several stages, including data selection and 

extraction, analysis, modelling, and 

prediction. By employing this methodology, 

one can develop an accurate predictive model 

capable of identifying volatility patterns and 

forecasting stock prices based on historical 

data [2]. 

 

2 Proposed models 

2.1 GARCH model  

The application of statistical GARCH models 

in predicting the volatility of financial asset 

returns is a widely accepted practice in finance 

research [3]. These models rely on the 

assumption that variance errors are serially 

autocorrelated and follow an autoregressive 

moving average process. Volatility, which 

measures the dispersion of asset returns 

around their average price, is an important 

statistical measure that helps to assess an 

asset's risk and expected return. Assets with 

high volatility are often considered riskier 

than those with low volatility because their 

prices are less predictable [4]. 

The GARCH model is an autoregressive 

model that uses the square of past 

observations and the past variance to model 

the current variance. It aims to minimize 

forecast errors by considering the errors in 

previous forecasts and improving the 

accuracy of ongoing forecasts. The GARCH 

model is an extension of the ARCH model, 

including a moving average component and 

an autoregressive component. The model 

comprises delaying variance terms alongside 

the residual delay errors from an average 

process. 

1 
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The introduction of the moving average 

component in the GARCH model allows it to 

model both conditional and time-dependent 

changes in variance over time. The model can 

capture conditional variance increments and 

decrements, providing insights into the 

changes in volatility patterns of financial asset 

returns. The GARCH model is written as 

GARCH(p,q), where q represents the number 

of moving average terms and p represents the 

number of autoregressive terms. The 

GARCH(p,q) model is expressed as a function 

of historical variances and residuals, where 

the conditional variance is estimated using a 

combination of past variances and residuals, 

with their respective coefficients, as follows: 

 

𝝈𝒕
𝟐 = 𝝎+ ∑(ⅈ = 𝟏, 𝒑) ∝ⅈ∗ 𝜺𝒕−ⅈ

𝟐 + ∑(𝒋 = 𝟏, 𝒒)𝜷𝒋 ∗ 𝝈𝒕−𝒋
𝟐  (1) 

where 

• 𝜎𝑡
2 is the conditional variance of the time series at time t 

• 𝜀𝑡 is the error term at time t 

• 𝜔 is a constant term  

• 𝛼𝑖 , 𝛽𝑗 are parameters to be estimated  

 

The first part of the equation, represented by 

the constant term 𝜔 , is the unconditional 

variance of the time series, which remains 

constant over time. The second part of the 

equation, ∑(ⅈ = 1, 𝑝) ∝𝑖∗ 𝜀𝑡−𝑖
2 , looks at the 

sum of the squares of the p most recent error 

terms, multiplied by their respective 

coefficients ∝𝑖 and shows the impact of recent 

shocks on the conditional variance of the time 

series. The third part of the equation, ∑(𝑗 =
1, 𝑞)𝛽𝑗 ∗ 𝜎𝑡−𝑗

2 , looks at the sum of the q most 

recent conditional variances, multiplied by 

their respective coefficients 𝛽𝑗 and shows the 

persistence of volatility over time. 

 

2.2 ARIMA model  

The ARIMA model (Auto Regressive 

Integrated Moving Average) is used to predict 

future data from a time series, indicating the 

strength of a dependent variable in relation to 

other changing variables [5]. 

According to the name, the ARIMA model is 

divided into three components, which are the 

autoregressive (AR) component, the 

difference component (I), and the moving 

average (MA) component. 

The first component is the AR model 

(Autoregressive) uses the concept of using 

past data to calculate future data. The 

underlying process is a linear regression of the 

performance of the variable in the current time 

series against the past performance of one or 

more variables in the same series. Thus, the 

principle by which it is outlined refers to the 

correlation between the selected data values 

and the values that precede and follow them, 

which assumes that all data are linearly 

related. 

The Moving Average (MA) is a technical 

analysis tool, known in the financial field, 

which offers an effective possibility of 

capturing the market trend by creating a 

constantly updated average price. The main 

reason for using a moving average is to reduce 

the amount of noise involved in market price 

corrections and fluctuations, which generally 

distort the overall trend. At the same time, 

mobile media can act in two forms: support 

and resistance. Thus, the moving average 

becomes a base, the price rising from its level, 

but also vice versa, becoming a plateau, where 

the price reaches the level and starts to fall. 

However, the lengths of moving averages also 

matter, being an indicator of the trend: for 

example, one moving average can illustrate an 

uptrend, while another part indicates a 

downtrend or vice versa. 

The last component is I - in this case, I 

represents the differentiation step for the 

generation of stationary time series data, 

assuming the elimination of seasonal and 

trend components. 

Thus, the ARIMA model uses a number of 

three parameters (p,d,q) defined as follows: 

• p is the order of the AR term 

• q is the order of the MA term 
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• d is the number of differencing required to 

make the time series stationary 

 

(𝟏 − 𝝋𝟏𝑩 −𝝋𝟐𝑩
𝟐 −⋯−𝝋𝒑𝑩

𝒑)(𝟏 − 𝑩)𝒅𝒀𝒕 = 𝜺𝒕 + (𝟏 + 𝜽𝟏𝑩 + 𝜽𝟐𝑩
𝟐 +⋯+

𝜽𝒒𝑩
𝒒) (2) 

 

where several terms are used to describe the 

time series data. 

𝑌𝑡  represents the value of the time series at 

time t, B is the backshift operator that moves 

the time series back one time period. The error 

term at time t, 𝜀𝑡 , measures the difference 

between the observed value of the time series 

and its predicted value. The autoregressive 

(AR) coefficients, 𝜑1  through 𝜑𝑝 , describe 

the linear relationship between the current 

value of the time series and its p most recent 

values. The moving average (MA) 

coefficients, 𝜃1  through 𝜃𝑞 , describe the 

linear relationship between the current value 

of the time series and its q most recent error 

terms. The order of differencing, d, indicates 

the number of times the time series needs to 

be differenced to make it stationary. Finally, 

the differencing operator, (1 − 𝐵)𝑑 , is 

applied to the time series to make it stationary 

[6]. 

 

3 Data analysis 

3.1 Research data  

The data utilized in this study consists of 

historical stock prices obtained from Yahoo 

Finance shown in Figure 1, spanning the 

period between January 1, 2005 and October 

7, 2022, encompassing a total of 4474 daily 

observations for Microsoft company. The 

stock data comprises daily records, including 

six columns: Open, High, Low, Close, Adj 

Close and Volume of Microsoft shares, which 

are identified by the symbol MSFT. The 

adjusted closing price of Microsoft stock was 

selected as the forecasting variable.

 

 
Fig. 1. Historical stock prices for Microsoft company between January 1, 2005 and October 7, 

2022  
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3.2 Data modelling. Volatility  

Figure 2 indicates that the stock under 

analysis is characterized by high volatility, 

which is defined as the tendency for prices to 

fluctuate significantly over time. In order to 

predict the future prices of such a volatile 

stock, the GARCH (Generalized 

Autoregressive Conditional 

Heteroskedasticity) model can be a suitable 

approach [7]. This model is designed 

specifically to capture the volatility of a time 

series by considering the impact of past 

shocks on the conditional variance of the 

series. 

 

 
Fig. 2. Microsoft daily returns over time 

 

3.3 Partial Auto-correlation function  

The partial autocorrelation function (PACF) is 

a statistical methodology employed to analyze 

the temporal dependencies of the observations 

in a time series, while simultaneously 

controlling for the effects of previous time 

steps. Specifically, PACF assesses the 

correlation between observations at varying 

lags, while removing the influence of all 

intermediate observations. Within the realm 

of time series analysis, PACF is an 

indispensable tool, particularly in modeling 

and forecasting financial time series. 

In the context of financial time series analysis, 

PACF plays a crucial role in estimating the 

parameters of a GARCH model, which is 

commonly utilized to model the volatility of 

financial assets. Notably, PACF can identify 

the appropriate values for the autoregressive 

term and the GARCH order in the GARCH 

model. The GARCH order determines the 

number of prior volatility shocks that are 

incorporated into the model to account for the 

current conditional variance.

 

 
Fig. 3. Partial Autocorrelation 
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Figure 3 depicts the partial autocorrelation of 

Microsoft stocks, wherein a considerable 

correlation at lag one is discernible. Based on 

the above visual representation, a prospective 

inference that can be drawn is that 

GARCH(1,1) has the potential to be a fitting 

candidate for future modelling purposes. 

 

3.4 Model build: GARCH(1,1) 

Based on the output of the GARCH(1,1) 

model, shown in Figure 4 and Figure 5, it can 

be observed that the log-likelihood is 

negative. The log-likelihood is the natural 

logarithm of the likelihood function, which 

measures the probability of observing the data 

given the model and its parameters. 

 

 
Fig. 4. Iterations and function evaluations for GARCH(1,1) 

 

 
Fig. 5. GARCH(1,1) model results  

 



66  Informatica Economică, vol. 27, no. 3/2023 

 

For the GARCH(1,1) model, a negative log-

likelihood indicates a better fit of the model to 

the data. The likelihood function is 

maximized to find the optimal parameter 

values that best fit the observed data. The 

maximum likelihood estimation algorithm 

attempts to find the parameter values that 

maximize the likelihood function, which in 

turn minimizes the negative log-likelihood. 

To assess the goodness of fit of a 

GARCH(1,1) model, it is necessary to 

compare its AIC and BIC values with those of 

other GARCH models estimated on the same 

dataset. A lower AIC or BIC value indicates a 

better fit for the data, but the specific values 

that can be considered good or bad depend on 

the nature of the dataset and the research 

question. 

In the present case, the AIC and BIC values 

are 16435.7 and 16461.3, respectively, which 

are similar, with a difference of less than 

0.5%. Therefore, it is inconclusive to 

determine which model is a better fit for the 

data based solely on AIC and BIC values. 

However, the results for GARCH(0,1), 

GARCH(1,0), and GARCH(1,2) are similar, 

and therefore, the focus of the analysis can be 

on the GARCH(1,1) model. 

 

3.5 Rolling predictions  

The analysis conducted used a GARCH(1,1) 

model to perform a rolling forecast of 

volatility in stock prices. The objective was to 

assess the effectiveness of the model in 

predicting volatility over a three-year period. 

A rolling forecast approach was implemented, 

where the model was trained on a decreasing 

window of historical data and then used to 

predict the volatility for the next day. This 

process was repeated for each subsequent day 

until the end of the three-year period. The 

rolling prediction technique allows for an 

evaluation of the model's performance in 

predicting volatility on an ongoing basis. 

The results of the analysis showed that the 

GARCH(1,1) model was effective in 

predicting volatility, with the predicted 

volatility values closely following the true 

volatility values over the three-year period. 

The model was able to capture the increase in 

volatility during periods of market turmoil and 

the subsequent decrease in volatility during 

periods of relative calm. 

The rolling forecast approach allowed for the 

evaluation of the model's performance over 

time, providing an indication of the model's 

ability to adapt to changing market conditions. 

Overall, the analysis shown in Figure 6 

suggests that the GARCH(1,1) model can be 

an effective tool for predicting volatility in 

stock prices, with potential applications in risk 

management and investment decision making. 

 

 
Fig. 6. Volatility prediction, Rolling forecast  

 

3.6 Data modelling: stock price forecast  

The subsequent phase of the analysis involves 

performing a comprehensive time series 

investigation to comprehend and scrutinize 

patterns and relationships within the 

sequential data over time. Upon inspection of 
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the plot, it appears that there is an increasing 

trend evident in the data. In such cases, the 

autoregressive integrated moving average 

(ARIMA) model can be considered a suitable 

option for modelling stock prices. 

However, it is critical to ensure that the data is 

stationary before applying the ARIMA model. 

Stationarity refers to the constancy of 

statistical properties, such as the mean and 

variance, across different time periods. Non-

stationary data can produce spurious results in 

modelling techniques and must be 

transformed to stationary data to obtain 

meaningful insights. 

Furthermore, it is advisable to conduct a 

decomposition of the time series data into its 

constituent components, namely, trend, 

seasonal, and residual components [8]. This 

decomposition enables the identification of 

the underlying patterns within the data, 

thereby providing a better understanding of 

the time series behavior, as shown in Figure 7. 

 

 

 
Fig. 7. Open price dynamic of Microsoft Stocks 

 

3.7 Decomposition  

The next step implies decomposition, which is 

a process in time series analysis that involves 

breaking down a time series into its 

constituent components: trend, seasonality, 

and residual ([9], [10]). 

Trend refers to the long-term direction of the 

series, such as whether it is increasing, 

decreasing, or remaining stable over time ([9], 

[10]). A clear trend was captured in the 

following plot and indicates that the 

underlying process generating the data is 

changing over time in a consistent growth 

direction. 

Seasonality, on the other hand, pertains to 

patterns in the data that repeat at regular 

intervals, such as daily, weekly, monthly, or 

yearly and include different factors such as 

holidays or human behavior, but it is not 

present in the current analysis ([9], [10]) 

Residuals are the unexplained variation or 

noise in the data that remains after accounting 

for the trend and seasonality components. 

Residuals can be considered as the difference 

between the observed values and the values 

predicted by the trend and seasonality 

components ([9], [10]). 

Based on the valuable insights received, an 

appropriate time series model such as ARIMA 

can be selected for forecasting or further 

analysis ([9], [11]) 

 

3.8 Work with first difference  

By taking the first difference of a non-

stationary time series, which involves finding 

the difference between consecutive 

observations, the series was transformed into 

a stationary one ([9], [11]). The value of d in 

the ARIMA model was determined using the 

Augmented Dickey-Fuller (ADF) test ([12] 

[9]). The ADF test shown in Figure 8 

indicated that the time series is now 

stationary, and therefore, the appropriate 

value of d is 1. 
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Fig. 8. Augmented Dickey-Fuller test results 

 

3.9 Building an autocorrelation function  

The autocorrelation function (ACF) is a 

statistical tool used in time series analysis to 

measure the correlation between observations 

in a time series as a function of the time lag 

between them ([9],[11]). It is a useful tool for 

understanding the underlying patterns and 

relationships within the data, as it allows us to 

identify any systematic dependencies between 

observations. 

The time series has a significant correlation 

with its lagged value of 1, and that a moving 

average model of order 1 can capture the 

structure of the time series data [13]. This 

suggests that the current value of the time 

series is influenced by the previous value and 

the error term, with the error term capturing 

the random and unpredictable fluctuations in 

the data that are not accounted for by the 

previous value, as shown in Figure 9. 

 

 
Fig. 9. Autocorrelation function results 

 

3.10 Building a partial autocorrelation 

function  

The partial autocorrelation function (PACF) is 

a statistical method employed in time series 

analysis for discerning the association 

between a variable and its lags while 

controlling for the influence of the 

intermediate lags ([9],[11]). In essence, it 

quantifies the correlation between the variable 

and its lags by removing the effects of the 

intervening lags. 

The partial autocorrelation function plot 

shown in Figure 10 revealed that a substantial 

correlation exists only with the initial lag, 

while the correlation diminishes and ceases to 

be statistically significant for all subsequent 

lags. This observation implies that an 

autoregressive model of the first order 

(AR(1)) is well-suited for modeling the time 

series data and posits that the current value of 

the time series is a linear summation of its 

previous values, coupled with a stochastic 

error term. 
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Fig. 10. Partial Autocorrelation function results  

 

3.11 ARIMA Model (1,1,1) and Prediction 

Plot  

 

 
Fig. 11. ARIMA(1,1,1) model results 
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Fig. 11. Adjusted closing price dynamic of Microsoft stocks 

 

According to the findings from Figure 10 and 

Figure 11, it seems that the model's predictive 

performance is not optimal. Despite some 

predictions being in close proximity to the 

actual values, there are several instances 

where the predicted values differ considerably 

from the actual values. This could imply that 

the model is not effectively capturing all the 

pertinent patterns and correlations in the data, 

resulting in inconsistencies and inaccuracies 

in the predictions. 

 

3.12 Model quality check  

Root Mean Squared Error (RMSE) is a 

criterion that gauges the divergence between 

the anticipated values and the actual values 

[14]. It is determined by taking the square root 

of the average of the squared differences 

between the forecasted values and the actual 

values [14]. The RMSE equation is as follows: 

𝑹𝑴𝑺𝑬 = √∑ (𝑷𝒓𝒆𝒅ⅈ𝒄𝒕𝒆𝒅ⅈ−𝑨𝒄𝒕𝒖𝒂𝒍ⅈ)
𝟐𝒏

ⅈ=𝟏

𝑵
   (3)  

where 

 

• N is the total number of observations in 

the dataset 

• Predictedi is the predicted value for 

observation i 

• Actuali is the actual value for observation 

i 

Further, the precision of a prediction model is 

evaluated by utilizing the Mean Absolute 

Percentage Error (MAPE), which assesses the 

variance between anticipated and factual 

values [14]. MAPE employs a formula that 

quantifies the discrepancy between the 

predicted and observed data: 

 

𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑

|𝑨𝒄𝒕𝒖𝒂𝒍ⅈ−𝑷𝒓𝒆𝒅ⅈ𝒄𝒕𝒆𝒅ⅈ|

𝑨ⅈ

𝒏

ⅈ=𝟏
   (4) 

where 

 

• N is the total number of observations in 

the dataset 

• Actuali is the actual value for observation 

i 

• Predictedi is the predicted value for 

observation i 

 

 
Fig. 12. Mean Absolute Percent Error and Root Mean Squared Error results  

 

As shown in Figure 12, The Mean Absolute 

Percentage Error (MAPE) of the model is 

17%, which means that on average, the 

predictions differ from the actual values by 

17%. In other words, the model's accuracy is 

not very high as it is missing the actual value 

by a significant margin. 

Furthermore, the Root Mean Squared Error 

(RMSE) of the model is 66.87, indicating that 

the errors in the predictions are relatively 
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large. This metric considers the magnitude of 

the errors, and therefore, a higher RMSE 

value means that the model's errors are larger. 

Overall, based on these evaluation metrics, it 

appears that the model's predictions are not 

accurate. The MAPE and RMSE values 

suggest that the model's performance needs 

improvement to make more accurate 

predictions. 

 

3.13 Rolling forecast  

 

 
Fig. 13. Adjusted closing price dynamic of Microsoft stocks 

 

3.14 Model quality check  

The new results covered in Figure 13 and 

Figure 14 shown that the model is performing 

relatively well in making predictions on the 

given dataset. The MAPE value of 9% 

indicates that, on average, the model's 

predictions deviate from the actual values by 

only 9%. This level of deviation is considered 

to be relatively low and suggests that the 

model is making reasonably accurate 

predictions. 

 

 
Fig. 14. Mean Absolute Percent Error and Root Mean Squared Error results  

 

Similarly, the RMSE value of 0.0077 

indicates that, on average, the difference 

between the predicted values and the actual 

values is very small. This suggests that the 

model's predictions are precise and accurate, 

with errors that are significantly smaller than 

the target variable's range. 

Taken together, these evaluation metrics 

suggest that the model is performing well in 

making accurate and precise predictions on 

this dataset.  

 

4 Conclusions 

In conclusion, a discernible enhancement in 

the model's performance has been observed 

through a comparative analysis between its 

initial evaluation and subsequent assessment. 

Initially, the Mean Absolute Percentage Error 

(MAPE) registered at 17%, signifying a 

substantial average deviation of 17% between 

the model's predictions and the actual dataset. 

Simultaneously, the Root Mean Squared Error 

(RMSE) displayed a relatively high value of 

66.87, indicating significant predictive 

inaccuracies. 

In contrast, in the most recent evaluation, the 

MAPE has seen a marked reduction, 

decreasing to a mere 9%. This reduction 

implies that the model's predictions now 

exhibit a modest 9% deviation from actual 

values, which is considered a commendable 

degree of error. Furthermore, the RMSE has 
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diminished to a negligible 0.0077, denoting a 

minimal average discrepancy between 

projected and actual values, affirming a 

heightened level of predictive precision. 

Collectively, these findings signify a 

noteworthy improvement in the model's 

predictive accuracy and precision. While its 

initial performance left room for 

enhancement, the latest results underscore the 

model's newfound capability to provide 

precise and accurate forecasts for the dataset 

in question. This positive development 

underscores the heightened suitability of the 

model for forecasting tasks. 
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