Analysis of Electronic Business of European Union and Serbia Companies Based on the LMAW-DNMA Method

Radojko LUKIC Faculty of Economics University of Belgrade radojko.lukic@ekof.bg.ac.rs

Modern companies perform their business activities in the classic way and electronically. Recently, there is an increasingly pronounced trend for companies from all countries of the world, which means both the European Union and Serbia, to conduct business activities electronically. Electronic business enables the performance of business activities in real time, without geographical and time barriers. The effects of electronic business are, among other things, an increase in sales, a reduction in costs and thus an increase in profits. In this paper, the trend and rankings of the electronic business of companies in the European Union and Serbia are comparatively analyzed. The general conclusion is that the participation of electronic business in the overall business of companies in the European Union and Serbia is increasing. This is almost the case with companies all over the world. The electronic business of Serbian companies is at a lower level compared to companies in the European Union. It is also at a lower level compared to companies in Croatia and Slovenia. Considering the positive effects of electronic business, it is necessary for Serbian companies to invest as much as possible in information and communication technology.

Keywords: Website, Use of Enterprise Resource Planning (ERP), Use of Customer Relationship Management (CRM), enterprise, European Union, Serbia, LMAW-DNMA method **DOI:** 10.24818/issn14531305/27.3.2023.03

1 Introduction

Companies today perform their business activities in the classic way and electronically. Research on the development of electronic business of all companies is very challenging, current, important and complex [1-10], [14-20]. Statistics record the trend of increasing electronic business in the total business of companies in all countries of the world, which means the European Union and Serbia [10-13]. This is completely understandable when you consider the fact that business activities can be carried out in real time, without time and geographical barriers. The effects of this are, among other things, an increase in sales, a reduction in costs and thus an increase in profits. It should be emphasized that in the conditions of the Covid-19 corona virus pandemic, the importance of developing and

2 Research methodology

The research methodology of the treated problem in this paper is based on the classical methodology and, in particular, on the performing, in addition to traditional business, electronic business has come to the fore.

In this paper, starting from the actuality and importance, on the basis of statistical data of Eurostat, the reached level of development and ranking of the electronic business of the companies of the European Union and Serbia is comparatively analyzed. In addition to the classic methodology, the LMAW-DNMA method is used. The LMAW-DNMA method, as a multi-criteria decision-making method, enables the selection and ranking of companies from the European Union and Serbia based on a number of criteria according to the development of electronic business. Based on that, the current situation and the need for the development of the company's electronic business in order to achieve the target performance can be realistically assessed.

application of the LMAW-DNMA method [4], [5], [9], [14].

The LMAW (Logarithm Methodology of Additive Weights) method is the latest method used to calculate criteria weights and rank

alternatives [9[, [4]. It takes place through the following steps : m alternatives A = $\{A_1, A_2, \dots, A_m\}$ are evaluated in comparison with *n* criteria $C = \{C_1, C_2, \dots, C_n\}$ with the participation of k experts E = $\{E_1, E_2, \dots, E_k\}$ and according to a predefined linguistic scale [14].

Step 1: Determination of weight coefficients of criteria

Experts $E = \{E_1, E_2, \dots, E_k\}$ set priorities with criteria $C = \{C_1, C_2, ..., C_n\}$ in relation to previously defined values of the linguistic scale. At the same time, they assign a higher

where is γ_{min}^{e} the minimum value of the priority vector and S should be greater than the base logarithmic function. In the case of using the function Ln, the value of S can be chosen as 3.

$$n_{Cn}^{e} = \frac{\gamma_{Cn}^{e}}{\gamma_{AIP}} \quad (1$$

So $R^e =$ the relational vector $(n_{C1}^e, n_{C2}^e, \dots, n_{Cn}^e)$ is obtained. Where it n_{Cn}^{e} represents the value of the real vector derived from the previous equation.

value to the criterion of greater importance and a lower value to the criterion of less importance on the linguistic scale. By the way, the priority vector is obtained. The label γ_{cn}^{e} represents the value of the linguistic scale that the expert $e(1 \le e \le k)$ assigns to the criterion $C_t (1 \le t \le n)$.

Step 1.1: Defining the absolute anti-ideal point γ_{AIP}

The absolute ideal point should be less than the smallest value in the priority vector. It is calculated according to the equation:

$$\gamma_{AIP} = \frac{\gamma_{min}^e}{S}$$

Step 1.2: Determining the relationship between the priority vector and the absolute anti-ideal point

The relationship between the priority vector and the absolute anti-ideal point is calculated using the following equation:

$$e_{Cn}^{e} = \frac{\gamma_{Cn}^{e}}{\gamma_{AIP}}$$
 (1)

Step 1.3: Determination of the vector of weight coefficients

The vector of weight coefficients w = $(w_1, w_2, ..., w_n)^T$ is calculated by the expert $e(1 \le e \le k)$ using the following equation

$$w_j^e = \frac{\log_A(n_{Cn}^e)}{\log_A(\prod_{J=1}^n n_{Cn}^e)}, A > 1 \quad (2)$$

weighting w_i^e it represents the where coefficients obtained according to expert evaluations e^{th} and the n_{Cn}^e elements of the realization vector R. The obtained values for the weighting coefficients must meet the condition that $\sum_{j=1}^{n} w_j^e = 1$.

By applying the Bonferroni aggregator shown in the following equation, the aggregated vector of weight coefficients is determined $w = (w_1, w_2, \dots, w_n)^T$:

$$W_{j} = \left(\frac{1}{k.(k-1)} \cdot \sum_{x=1}^{k} \left(w_{j}^{(x)}\right)^{p} \cdot \sum_{\substack{y=1\\ Y \neq x}}^{k} \left(w_{ij}^{(y)}\right)^{q}\right)^{\frac{1}{p+q}}$$
(3)

The value of p and q are stabilization parameters and $p, q \ge 0$. The resulting weight coefficients should fulfill the condition that $\sum_{i=1}^{n} w_i = 1$.

DNMA (Double Normalization-based Multiple Aggregation) method is a newer method for showing alternatives [4]. Two different normalized (linear and vector) techniques are used, as well as three different coupling functions (full compensation - CCM, non-compensation - UCM and incomplete

:

compensation - ICM). The steps of applying this method are as follows [9]: **Step 1:** Normalized decision matrix The elements of the decision matrix are normalized with linear (\hat{x}_{ij}^{1N}) normalization using the following equation:

$$\hat{x}_{ij}^{1N} = 1 - \frac{|x^{ij} - r_j|}{max \left\{ \max_{i} x^{ij}, r_j \right\} - min \left\{ \min_{i} x^{ij}, r_j \right\}}$$
(4)

The vector (\hat{x}_{ij}^{2N}) is normalized using the following equation:

$$\hat{x}_{ij}^{2N} = 1 - \frac{|x^{ij} - r_j|}{\sqrt{\sum_{i=1}^{m} (x^{ij})^2 + (r_j)^2}}$$
(5)

. ..

The value r_j is the target value for c_j the criterion and is considered $\max_i x^{ij}$ for both utility and $\min_i x^{ij}$ cost criteria.

Step 2.1: In this phase, the standard deviation (σ_j) for the criterion c_j is determined with the following equation where *m* is the number of alternatives:

The CCM (Complete Compensation Model)

is calculated using the following equation:

Step 2: Determining the weight of the criteria This step consists of three phases:

$$\sigma_j = \sqrt{\frac{\sum_{i=1}^m \left(\frac{x^{ij}}{\max x^{ij}} - \frac{1}{m} \sum_{i=1}^m \left(\frac{x^{ij}}{\max x^{ij}}\right)\right)^2}{m}} \quad (6)$$

Step 2.2: Values of the standard deviation normalize with the following equation: calculated for the criteria se

$$w_j^{\sigma} = \frac{\sigma_j}{\sum_{i=1}^n \sigma_j} \quad (7)$$

Step 2.3: Finally, the weights are adjusted with the following equation:

$$\widehat{w}_{j} = \frac{\sqrt{w_{j}^{\sigma} \cdot w_{j}}}{\sum_{i=1}^{n} \sqrt{w_{j}^{\sigma} \cdot w_{j}}} \quad (8)$$

Step 3: Calculating the aggregation model Three aggregation functions (CCM, UCM and ICM) are calculated separately for each alternative.

$$u_1(a_i) = \sum_{j=1}^n \frac{\widehat{w}_j \cdot \widehat{x}_{ij}^{1N}}{\max_i \widehat{x}_{ij}^{1N}} \quad (9)$$

The UCM (non-compensatory model) is calculated using the following equation:

$$u_2(a_i) = \max_j \widehat{w}_j \left(\frac{1 - \widehat{x}_{ij}^{1N}}{\max_i \widehat{x}_{ij}^{1N}} \right) \quad (10)$$

The ICM (Incomplete Compensation Model) is calculated using the following equation:

$$u_{3}(a_{i}) = \prod_{j=1}^{n} \left(\frac{\hat{x}_{ij}^{2N}}{\max_{i} \hat{x}_{ij}^{2N}} \right)^{\hat{w}_{j}} \quad (11)$$

Step 4: Integration of utility values with the following equation using the Euclidean principle of distance:

$$DN_{i} = w_{1} \sqrt{\varphi \left(\frac{u_{1}(a_{i})}{\max u_{1}(a_{i})}\right)^{2} + (1-\varphi) \left(\frac{m-r_{1}(a_{i})+1}{m}\right)^{2}} - w_{2} \sqrt{\varphi \left(\frac{u_{2}(a_{i})}{\max u_{2}(a_{i})}\right)^{2} + (1-\varphi) \left(\frac{r_{2}(a_{i})}{m}\right)^{2}} + w_{3} \sqrt{\varphi \left(\frac{u_{3}(a_{i})}{\max u_{3}(a_{i})}\right)^{2} + (1-\varphi) \left(\frac{m-r_{3}(a_{i})+1}{m}\right)^{2}}$$
(12)

In this means $r_1(a_i)$ and case, the $r_3(a_i)$ represent the ordinal number of the alternative a_i sorted by CCM and ICM functions in descending value (higher value first). On the other hand, $r_2(a_i)$ it shows the sequence number in the obtained order according to the increasing value (smaller value first) for the UCM function used. The label φ is the relative importance of the child value used and is in the range [0.1]. It is considered that it can be taken as $\varphi = 0.5$. coefficients W_1, W_2, W_3 are obtained The weights of the used functions CCM, UCM and ICM, respectively. The sum should be equal $w_1 + w_2 + w_3 = 1$. When determining the weights, if the decision maker attaches importance to a wider range of performance alternatives, he can set a higher value for w_1 . In case the decision maker is not willing to take risks, i.e. to choose a poor alternative according to some criterion, he can assign a higher weight to w_2 . However, the decision maker may assign a greater weight to w_3 if he

simultaneously considers overall performance and risk. Finally, the *DN* values are sorted in descending order, with the higher value alternatives being the best.

3 Ranking of companies in the European Union and Serbia according to the development of electronic business using the LMAW-DNMA method

When ranking the companies of the European Union and Serbia according to the development of electronic business based on the LMAW-DNMA method, the following criteria were used: C1 - Website, C2 - Use of Enterprise Resource Planning (ERP) and C3 -Use of Customer Relationship Management (CRM). According to statistics from Eurostat, they are good indicators of electronic business. Alternatives are the member states of the European Union and Serbia. Table 1 shows the criteria, alternatives and initial data for 2021.

		Website	Use of Enterprise Resource Planning	Use of Customer Relationship
		C1	<u>(ERP)</u>	Management (CKM)
		70	28	25
A 1		/ð	<u> </u>	51
AI	Belgium Del se seis	:	<u> </u>	54
AZ	Bulgaria	52	22	1/
AJ		83	38	18
A4	Denmark	:	50	42
A5	Germany	89	38	45
A6	Estonia	:	23	23
A7	Ireland	82	24	32
A8	Greece	62	35	20
A9	Spain	77	49	40
A1(France	70	45	32
A11	Croatia	68	24	20
A12	Italy	75	32	27
A13	Cyprus	69	34	39
A14	Latvia	68	39	18
A15	Lithuania	78	45	32
A16	Luxembourg	81	40	35
A17	Hungary	63	21	15
A18	Malta	82	39	39
A19	Netherlands	92	43	52
A2(Austria	91	45	46
A21	Poland	71	32	32
A22	Portugal	62	52	25
A23	Romania	51	17	17
A24	Slovenia	83	36	22
A25	Slovakia	76	31	22
A26	Finland	96	48	46
A27	Sweden	91	35	38
	Norway	83	39	39
	Albania	44	35	24
	Montenegro (1)	: (in)	: (in)	47
	North Macedonia	49	15	15
A28	Serbia	85	22	14
	Turkey	49	28	11
	Bosnia and Herzegovina	62	26	16

 Table 1. Enterprises adopting e-business applications, 2021 (% enterprise)

Note: 2021 EU aggregates for website variables excluding Belgium, Denmark and Estonia. (:) data not available. (¹) Montenegro: data for enterprises with website and for use of ERP: unreliable

Source: Eurostat (isoc_ciweb) and (isoc_eb_iip)

In the countries of the European Union, the trend is to increase the electronic business of companies. This is clearly shown by the data in Table 2. For illustration, in 2021 compared to 2019, there was an increase in Enterprises with a website (from 77% to 78%), Use of Enterprise Resource Planning (ERP) (from 36% to 38%) and Use of Customer Relationship Management (CRM) (from 33% to 35%).

Table 2. Adoption of e-business applications in enterprises, EU, 2019 and 2021(% of enterprises)

	2019	2021
Enterprises with a website	77	78
Use of Enterprise Resource Planning (ERP)	36	38
Use of Customer Relationship Management (CRM)	33	35
Source: Eurostat (isoc_ciweb) and (isoc_eb_iip)		

In Serbia, the percentage of companies that use the website is higher than in North Macedonia and Bosnia and Herzegovina. However, compared to Croatia and Slovenia, the percentage of companies in Serbia that use the website is lower. The percentage of companies in Serbia that use *Use of Enterprise Resource Planning (ERP)* is lower than in Croatia and Slovenia. Compared to North Macedonia, it is larger, but smaller compared to Bosnia and Herzegovina. In Serbia, the percentage of companies that use *Use of Customer Relationship Management (CRM)* is lower than in Croatia and Slovenia. Likewise, it is smaller compared to North Macedonia and Bosnia and Herzegovina. All in all, the level of development of the electronic business of companies in Serbia is unsatisfactory, especially in relation to the countries of the European Union. In the future, due to its importance, it is therefore necessary that companies in Serbia perform their business activities electronically as much as possible. For these needs, they should invest more in information and communication technology.

The weight coefficients of the criteria were calculated using the LMAW method. Table 3 shows the prioritization scale for those needs.

Linguistic Variables	Abbreviation	Prioritization
Absolutely Low	AL	1
Very Low	VL	1.5
Low	L	2
Medium	М	2.5
Equal	Е	3
Medium High	MH	3.5
High	Н	4
Very High	VH	4.5
Absolutely High	AH	5

Table 3. Prioritization Scale

Table 4 shows the criteria evaluation coefficient. procedure and, as a result, their weighted

Table 4. Evaluation	and weight coeffici	ents of the criteria

KIND	1	1	1
	C1	C2	C3
E1	Н	AH	Н
E2	VH	VH	MH
E3	Н	MH	VH
E4	MH	Н	Н

E5	VH	VH	MH
Ϋ́AIP	0.5		
	C1	C2	C3
R1	8	10	8
R2	9	9	7
R3	8	7	9
R4	7	8	8
R5	9	9	7
Weight Coefficients Vector	C1	C2	C3
W1j	0.322	0.356	0.322
W2j	0.347	0.347	0.307
W3j	0.334	0.313	0.353
W4j	0.319	0.341	0.341
W5j	0.347	0.347	0.307
Aggregated Fuzzy Vectors	C1	C2	C3
W1j	0.022	0.024	0.021
W2j	0.023	0.024	0.020
W3j	0.022	0.022	0.023
W4j	0.022	0.023	0.022
W5j	0.023	0.024	0.020
SUM	0.111	0.116	0.106
Aggregated Weight Coefficient Vectors	0.3335	0.3405	0.3257

According to the LMAW method, the most important criterion is C2 - Use of Enterprise Resource Planning (ERP). By increasing the use of Use of Enterprise Resource Planning (ERP), it is possible to influence the increase

in the performance of companies in the countries of the European Union and Serbia. Tables 5 - 11 show the procedure and results of applying the LMAW-DNMA method.

	KIND	1	1	1
INITIAL MATDIY	Weight	0.3335	0.3405	0.3257
		C1	C2	C3
	A1	0	57	54
	A2	52	22	17
	A3	83	38	18
	A4	0	50	42
	A5	89	38	45
	A6	0	23	23
	A7	82	24	32
	A8	62	35	20
	A9	77	49	40
	A10	70	45	32
	A11	68	24	20
	A12	75	32	27
	A13	69	34	39
	A14	68	39	18
	A15	78	45	32

A16	81	40	35
A17	63	21	15
A18	82	39	39
A19	92	43	52
A20	91	45	46
A21	71	32	32
A22	62	52	25
A23	51	17	17
A24	83	36	22
A25	76	31	22
A26	96	48	46
A27	91	35	38
A28	85	22	14
MAX	96.0000	57.0000	54.0000
MIN	0.0000	17.0000	14.0000

Table 6. Linear Normalization Matrix

		C1	C2	C3	MAX
Linear	A1	0.0000	1.0000	1.0000	1.0000
Normalization MATRIX	A2	0.5417	0.1250	0.0750	0.5417
	A3	0.8646	0.5250	0.1000	0.8646
	A4	0.0000	0.8250	0.7000	0.8250
	A5	0.9271	0.5250	0.7750	0.9271
	A6	0.0000	0.1500	0.2250	0.2250
	A7	0.8542	0.1750	0.4500	0.8542
	A8	0.6458	0.4500	0.1500	0.6458
	A9	0.8021	0.8000	0.6500	0.8021
	A10	0.7292	0.7000	0.4500	0.7292
	A11	0.7083	0.1750	0.1500	0.7083
	A12	0.7813	0.3750	0.3250	0.7813
	A13	0.7188	0.4250	0.6250	0.7188
	A14	0.7083	0.5500	0.1000	0.7083
	A15	0.8125	0.7000	0.4500	0.8125
	A16	0.8438	0.5750	0.5250	0.8438
	A17	0.6563	0.1000	0.0250	0.6563
	A18	0.8542	0.5500	0.6250	0.8542
	A19	0.9583	0.6500	0.9500	0.9583
	A20	0.9479	0.7000	0.8000	0.9479
	A21	0.7396	0.3750	0.4500	0.7396
	A22	0.6458	0.8750	0.2750	0.8750
	A23	0.5313	0.0000	0.0750	0.5313
	A24	0.8646	0.4750	0.2000	0.8646
	A25	0.7917	0.3500	0.2000	0.7917
	A26	1.0000	0.7750	0.8000	1.0000
	A27	0.9479	0.4500	0.6000	0.9479
	A28	0.8854	0.1250	0.0000	0.8854

T 7 4		C1	C2	C3	MAX
Vector	A1	0.0000	1.0000	1.0000	1.0000
Normanzation MATRIX	A2	0.8889	0.8315	0.7971	0.8889
	A3	0.9672	0.9085	0.8026	0.9672
	A4	0.0000	0.9663	0.9342	0.9663
	A5	0.9823	0.9085	0.9507	0.9823
	A6	0.0000	0.8363	0.8300	0.8363
	A7	0.9646	0.8411	0.8794	0.9646
	A8	0.9141	0.8941	0.8136	0.9141
	A9	0.9520	0.9615	0.9232	0.9615
	A10	0.9343	0.9422	0.8794	0.9422
	A11	0.9293	0.8411	0.8136	0.9293
	A12	0.9470	0.8797	0.8520	0.9470
	A13	0.9318	0.8893	0.9178	0.9318
	A14	0.9293	0.9133	0.8026	0.9293
	A15	0.9545	0.9422	0.8794	0.9545
	A16	0.9621	0.9182	0.8958	0.9621
	A17	0.9166	0.8267	0.7862	0.9166
	A18	0.9646	0.9133	0.9178	0.9646
	A19	0.9899	0.9326	0.9890	0.9899
	A20	0.9874	0.9422	0.9561	0.9874
	A21	0.9368	0.8797	0.8794	0.9368
	A22	0.9141	0.9759	0.8410	0.9759
	A23	0.8863	0.8074	0.7971	0.8863
	A24	0.9672	0.8989	0.8245	0.9672
	A25	0.9495	0.8748	0.8245	0.9495
	A26	1.0000	0.9567	0.9561	1.0000
	A27	0.9874	0.8941	0.9123	0.9874
	A28	0.9722	0.8315	0.7807	0.9722
	Adj Wj	0.2973	0.3406	0.3622	

Table 7. Vector Normalization Matrix

 Table 8. CCM (Complete Compensatory Model)

	u1(ai)	C1	C2	C3	SUM
CCM (Complete	A1	0.0000	0.3406	0.3622	0.7027
Compensatory Model)	A2	0.2973	0.0786	0.0502	0.4260
	A3	0.2973	0.2068	0.0419	0.5459
	A4	0.0000	0.3406	0.3073	0.6479
	A5	0.2973	0.1929	0.3028	0.7929
	A6	0.0000	0.2270	0.3622	0.5892
	A7	0.2973	0.0698	0.1908	0.5578
	A8	0.2973	0.2373	0.0841	0.6187
	A9	0.2973	0.3397	0.2935	0.9304
	A10	0.2973	0.3269	0.2235	0.8477
	A11	0.2973	0.0841	0.0767	0.4581
	A12	0.2973	0.1635	0.1507	0.6114
	A13	0.2973	0.2014	0.3150	0.8136
	A14	0.2973	0.2644	0.0511	0.6128
	A15	0.2973	0.2934	0.2006	0.7913

A16	0.2973	0.2321	0.2254	0.7547
A17	0.2973	0.0519	0.0138	0.3629
A18	0.2973	0.2193	0.2650	0.7816
A19	0.2973	0.2310	0.3590	0.8873
A20	0.2973	0.2515	0.3057	0.8544
A21	0.2973	0.1727	0.2204	0.6903
A22	0.2194	0.3406	0.1138	0.6738
A23	0.2973	0.0000	0.0511	0.3484
A24	0.2973	0.1871	0.0838	0.5681
A25	0.2973	0.1506	0.0915	0.5393
A26	0.2973	0.2639	0.2898	0.8509
A27	0.2973	0.1617	0.2293	0.6882
A28	0.2973	0.0481	0.0000	0.3453

 Table 9. UCM (Uncompensatory Model)

	u2(ai)	C1	C2	C3	MAX
UCM	A1	0.0000	0.0000	0.0000	
(Uncompensatory Model)	A2	0.0000	0.2620	0.3120	0.3120
Widdel)	A3	0.0000	0.1338	0.3203	0.3203
	A4	0.0000	0.0000	0.0549	0.0549
	A5	0.0000	0.1477	0.0594	0.1477
	A6	0.0000	0.1135	0.0000	0.1135
	A7	0.0000	0.2708	0.1714	0.2708
	A8	0.0000	0.1033	0.2781	0.2781
	A9	0.0000	0.0009	0.0687	0.0687
	A10	0.0000	0.0136	0.1387	0.1387
	A11	0.0000	0.2564	0.2855	0.2855
	A12	0.0000	0.1771	0.2115	0.2115
	A13	0.0000	0.1392	0.0472	0.1392
	A14	0.0000	0.0761	0.3111	0.3111
	A15	0.0000	0.0472	0.1616	0.1616
	A16	0.0000	0.1085	0.1368	0.1368
	A17	0.0000	0.2887	0.3484	0.3484
	A18	0.0000	0.1213	0.0972	0.1213
	A19	0.0000	0.1096	0.0031	0.1096
	A20	0.0000	0.0891	0.0565	0.0891
	A21	0.0000	0.1679	0.1418	0.1679
	A22	0.0779	0.0000	0.2484	0.2484
	A23	0.0000	0.3406	0.3111	0.3406
	A24	0.0000	0.1535	0.2784	0.2784
	A25	0.0000	0.1900	0.2707	0.2707
	A26	0.0000	0.0766	0.0724	0.0766
	A27	0.0000	0.1789	0.1329	0.1789
	A28	0.0000	0.2925	0.3622	0.3622

	10010 10010	in (meompiete	compensatory	modely	
	u3(ai)	C1	C2	C3	MAX
ICM (Incomplete	A1	0.0000	1.0000	1.0000	0.0000
Compensatory Model)	A2	1.0000	0.9775	0.9613	0.9397
	A3	1.0000	0.9789	0.9347	0.9150
	A4	0.0000	1.0000	0.9878	0.0000
	A5	1.0000	0.9738	0.9882	0.9623
	A6	0.0000	1.0000	0.9973	0.0000
	A7	1.0000	0.9544	0.9670	0.9230
	A8	1.0000	0.9925	0.9587	0.9515
	A9	0.9971	1.0000	0.9854	0.9825
	A10	0.9975	1.0000	0.9753	0.9729
	A11	1.0000	0.9666	0.9530	0.9212
	A12	1.0000	0.9752	0.9624	0.9386
	A13	1.0000	0.9842	0.9945	0.9788
	A14	1.0000	0.9941	0.9483	0.9427
	A15	1.0000	0.9956	0.9707	0.9665
	A16	1.0000	0.9842	0.9745	0.9591
	A17	1.0000	0.9654	0.9459	0.9132
	A18	1.0000	0.9816	0.9821	0.9640
	A19	1.0000	0.9799	0.9997	0.9796
	A20	1.0000	0.9842	0.9884	0.9728
	A21	1.0000	0.9788	0.9773	0.9566
	A22	0.9807	1.0000	0.9475	0.9293
	A23	1.0000	0.9688	0.9623	0.9322
	A24	1.0000	0.9754	0.9439	0.9206
	A25	1.0000	0.9725	0.9502	0.9241
	A26	1.0000	0.9850	0.9839	0.9692
	A27	1.0000	0.9668	0.9718	0.9395
	A28	1.0000	0.9482	0.9236	0.8757

 Table 10. ICM (Incomplete Compensatory Model)

Table 11. Ranking of alternatives

											w1	w2	w3	
											0.6	0.1	0.3	
		CC	CM	φ	UC	CM	φ	IC	Μ	φ	T 14:11:4.	v Vo	1100	Rank
		u1(ai)	Rank	0.5	u2(ai)	Rank	0.5	u3(ai)	Rank	0.5	ounty	v aiues		Order
Belgium	A1	0.7027	11	0.7013	0.0000	1	0.0253	0.0000	26	0.0758	0.4461	0.4	461	26
Bulgaria	A2	0.4260	25	0.3391	0.3120	24	0.8593	0.9397	14	0.7752	0.5220	0.5	220	21
Czechia	A3	0.5459	22	0.4510	0.3203	25	0.8886	0.9150	23	0.6757	0.5622	0.5	622	19
Denmark	A4	0.6479	15	0.6062	0.0549	2	0.1184	0.0000	26	0.0758	0.3983	0.3	983	27
Germany	A5	0.7929	7	0.8196	0.1477	12	0.4183	0.9623	9	0.8572	0.7907	0.7	907	8
Estonia	A6	0.5892	19	0.5141	0.1135	7	0.2835	0.0000	26	0.0758	0.3595	0.3	595	28
Ireland	A7	0.5578	21	0.4696	0.2708	19	0.7139	0.9230	20	0.7021	0.5638	0.5	638	18
Greece	A8	0.6187	16	0.5734	0.2781	20	0.7415	0.9515	12	0.8082	0.6607	0.6	607	14
Spain	A9	0.9304	1	1.0000	0.0687	3	0.1540	0.9825	1	1.0000	0.9154	0.9	154	1
France	A10	0.8477	5	0.8845	0.1387	10	0.3702	0.9729	4	0.9428	0.8506	0.8	506	4
Croatia	A11	0.4581	24	0.3703	0.2855	22	0.7870	0.9212	21	0.6931	0.5088	0.5	088	22
Italy	A12	0.6114	18	0.5413	0.2115	16	0.5777	0.9386	16	0.7510	0.6079	0.6	079	16
Cyprus	A13	0.8136	6	0.8483	0.1392	11	0.3886	0.9788	3	0.9630	0.8368	0.8	368	5

Latvia	A14	0.6128	17	0.5556	0.3111	23	0.8403	0.9427	13	0.7897	0.6543	0.6543	15
Lithuania	A15	0.7913	8	0.8018	0.1616	13	0.4553	0.9665	7	0.8902	0.7937	0.7937	7
Luxembourg	A16	0.7547	10	0.7478	0.1368	9	0.3507	0.9591	10	0.8406	0.7359	0.7359	10
Hungary	A17	0.3629	26	0.2860	0.3484	27	0.9631	0.9132	24	0.6693	0.4687	0.4687	24
Malta	A18	0.7816	9	0.7797	0.1213	8	0.3112	0.9640	8	0.8733	0.7609	0.7609	9
Netherlands	A19	0.8873	2	0.9590	0.1096	6	0.2621	0.9796	2	0.9808	0.8958	0.8958	2
Austria	A20	0.8544	3	0.9234	0.0891	5	0.2149	0.9728	5	0.9260	0.8534	0.8534	3
Poland	A21	0.6903	12	0.6779	0.1679	14	0.4821	0.9566	11	0.8250	0.7024	0.7024	11
Portugal	A22	0.6738	14	0.6369	0.2484	17	0.6476	0.9293	18	0.7242	0.6642	0.6642	13
Romania	A23	0.3484	27	0.2695	0.3406	26	0.9344	0.9322	17	0.7362	0.4760	0.4760	23
Slovenia	A24	0.5681	20	0.4879	0.2784	21	0.7594	0.9206	22	0.6857	0.5744	0.5744	17
Slovakia	A25	0.5393	23	0.4370	0.2707	18	0.6971	0.9241	19	0.7114	0.5453	0.5453	20
Finland	A26	0.8509	4	0.9038	0.0766	4	0.1805	0.9692	6	0.9077	0.8326	0.8326	6
Sweden	A27	0.6882	13	0.6609	0.1789	15	0.5152	0.9395	15	0.7630	0.6770	0.6770	12
Serbia	A28	0.3453	28	0.2637	0.3622	28	1.0000	0.8757	25	0.6383	0.4497	0.4497	25
	MAX	0.9304			0.3622			0.9825					

Therefore, according to the results of the LMAW-DNMA method, the top five companies of the European Union countries in terms of the development of electronic business fall in the following order: Spain, Netherlands, Austria, France and Cyprus. Companies from Germany (eighth place), France (fourth place) and Italy (sixteenth place) are positioned at an enviable level. The worst position was taken by Estonian companies. Romanian companies are positioned on the twenty-third place.

Serbian companies are positioned in twentyfifth place. They are in relation to the companies of the European Union, and in the region, that is. Croatia (twenty-second place) and Slovenia (seventeenth place) are worse positioned. All of this in itself leads to the conclusion that companies in Serbia should, given its importance, pay more attention to the development of e-business in the future.

5 Electronic business of European Union companies by size

In the European Union, the development of electronic business of companies varies by size. The data in Table 12 clearly supports this. The development of electronic business in large companies is significantly higher than in small and medium-sized ones. Likewise, the development of electronic business in medium-sized companies is higher than in small ones. The conclusion is that the size of the company significantly affects the level of application of electronic business. Larger companies are able to invest more in information and communication technology than smaller ones.

Table 12. Enterprises adopting e-business applications, by size class, EU, 2021(% of enterprises)

	Variables	All enterprises	Small	Medium	Large
Enterprises with a website	e_web	78	75	89	94
Use of Enterprise Resource Planning					
(ERP)	e_erp1	38	33	62	81
Use of Customer Relationship					
Management (CRM)	e_crm	35	31	50	65

Notes: 2021 EU aggregates for website variables excluding Belgium, Denmark and Estonia. Source: Eurostat (isoc_ciweb) and (isoc_eb_iip)

6 Sectoral analysis of the electronic business of companies in the countries of the European Union

In any case, the development of electronic business of companies in the countries of the European Union is different in individual sectors, partly caused by differences in the very nature of business. This is clearly seen from the data presented in Table 13.

Table 13. Enterprises having ERP software package, and Ent	erprises using Customer
Relationship Management (CRM), by economic activity, EU	J, 2021 (% enterprises)

	Enterprises who have an ERP software package	Enterprises using analytical CRM	Enterprises using operational CRM
	e_erp1	E_CRMAN	E_CRMSTR
Information and communication	54	42	63
Manufacturing	49	36	44
Electricity, gas, steam and air conditioning; water supply, sewerage, waste management and remediation activities	48	17	43
Wholesale and retail trade; repair of motor vehicles and			
motorcycles	46	19	42
Real estate activities	44	28	41
Professional, scientific and technical activities	39	16	40
Retail trade	33	18	35
Administrative and support service activities	31	19	34
Transport and storage	30	21	29
Accommodation	28	12	24
Construction	26	7	22
All activities	38	19	34

Source: Eurostat (isoc_eb_iip)

The highest percentage of Enterprises who have ERP software package, Enterprises using analytical CRM and Enterprises using operational CRM is in the Information and communication sector. It is the smallest in the Construction sector. In the Wholesale and retail trade sector; repair of motor vehicles and motorcycles and Retail trade electronic business is at an enviable level. The character itself, among other things, affects the level of development of electronic business of companies from different sectors. Investment needs in information and communication technology are different for each sector.

7 Conclusion

Empirical research on electronic business of companies in the European Union and Serbia leads to the following conclusions:

In the countries of the European Union, the trend is to increase the electronic business of companies. Thus, for example, in 2021 compared to 2019, there was an increase in Enterprises with a website, Use of Enterprise Resource Planning (ERP) and Use of Customer Relationship Management (CRM). According to the results of the LMAW-DNMA method, the top five companies of the European Union countries in terms of the development of electronic business are in order: Spain, Netherlands, Austria, France and Cyprus. As far as the leading countries of the European Union are concerned. the positioning of companies from Germany (eighth place), France (fourth place) and Italy (sixteenth place) is at an enviable level. The worst position was taken by Estonian companies. companies Romanian are positioned on the twenty-third place.

As far as Serbian companies are concerned, they are positioned in twenty-fifth place. They are positioned worse in relation to the companies of the European Union, and in the region, namely Croatia (twenty-second place) and Slovenia (seventeenth place). In Serbia, the percentage of companies that use the website is higher than in North Macedonia and Bosnia and Herzegovina. However, compared to Croatia and Slovenia, the percentage of companies in Serbia that use the website is lower. The percentage of companies in Serbia that use Use of Enterprise Resource Planning (ERP) is lower than in Croatia and Slovenia. Compared to North Macedonia, it is larger, but smaller compared to Bosnia and Herzegovina. In Serbia, the percentage of companies that use Use of Customer Relationship Management (CRM) is lower than in Croatia and Slovenia. It is also smaller compared to North Macedonia and Bosnia and Herzegovina. Unsatisfactory level of development of electronic business of companies in Serbia, especially in relation to developed countries of the European Union. In the future, due to its importance, it is necessary for companies in Serbia to develop and use electronic business as much as possible in their operations, and for these needs to invest in modern information and communication technology.

In the European Union, the development of electronic business of companies varies by size. It is significantly higher in large companies than in small and medium-sized ones. Likewise, it is higher in medium-sized than in small enterprises. The size of the company therefore significantly affects the level of application of electronic business. Compared to small and larger companies, they are also in a better position to invest in information and communication technology.

The highest percentage of Enterprises who have ERP software package, Enterprises using analytical CRM and Enterprises using operational CRM is in the Information and communication sector, and the lowest is in the Construction sector. In the Wholesale and retail trade sector; repair of motor vehicles and motorcycles and Retail trade electronic business is at an enviable level. Therefore, the s am sector's character, among other things, affects the level of development of the company's electronic business, as well as the needs for investment in information and communication technology.

References

- K. Alam, M.A. Ali, M. Erdiaw-Kwasie, M. Shahiduzzaman, E. Velayutham, P.A. Murray, R. Wiesner, (2022). Impact of ICTs on Innovation and Performance of Firms: Do Start-ups, Regional Proximity and Skills Matter? *Sustainability*, 14, 5801. https://doi.org/10.3390/su14105801
- J.M. Argilés-Bosch, J. Garcia-Blandón, & D. Ravenda, (2022). Cost behavior in ecommerce firms. *Electron Comm Res*. https://doi.org/10.1007/s10660-021-09528-2
- [3] D. Božanić, D. Pamučar, A. Milić, D. Marinković, and N. Komazec. 2022. Modification of the Logarithm Methodology of Additive Weights (LMAW) by a Triangular Fuzzy Number and Its Application in Multi-Criteria Decision Making. *Axioms*, 11(3), 89. https://doi.org/10.3390/axioms11030089
- [4] G. Demir, (2022). Küresel Çok Boyutlu Yoksulluk Endeksinin Bulanık LMAW Yöntemi İle Değinizili. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 2(1), 67-77.
- [5] F. Ezer, (2020). Multi-criteria Decisionmaking comprehensive approach from past to present. Seçkin Publications.
- [6] S. Gu, B. Slusarczyk, S. Hajizada, I. Kovalyova, A. Sakhbieva, (2021). Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. J. Theor. Appl. Electron. Commerce. Res., 16, 2263–2281.

https://doi.org/10.3390/jtaer16060125

[7] J.J. Jorgensen, V.S. Zuiker, L. Manikowske, & M. LeHew, (2022). Impact of Communication Technologies on Small Business Success. *Journal of Small Business Strategy*, 32(3), 142–157. https://doi.org/10.53703/001c.36359

- [8] S. Kazakov, J.L. Ruiz-Alba, and M.M. Muñoz, (2021). The impact of information and communication technology and internal market orientation blending on organizational performance in small and medium enterprises. European Journal of Management and Business Economics, 30(2), 129-151. https://doi.org/10.1108/EJMBE-04-2020-0068
- [9] H. Liao, & X. Wu, (2020). DNMA: A double normalization-based multiple aggregation methods for multi-expert multi-criteria decision making. *Omega*, 94, 102058. https://doi.org/10.1016/j.omega.2019.04. 001
- [10] A. Liu, M. Osewe, Y. Shi, X. Zhen, Y. Wu, (2022). Cross-Border E-Commerce Development and Challenges in China: A Systematic Literature Review. J. Theor. Appl. Electron. Commerce. Res., 17, 69–88. https://doi.org/10.3390/jtaer 17010004
- [11] R. Lukic, S. Lalic, and D. Vojteski Kljenak, (2016). Research and Development Costs in Retail Trade. *Management and Economics Review*, 1(2), 170-182.
- [12] R. Lukic. (2022). Application of the MARCOS Method in Analysis of the Positioning of Electronic Trade of the European Union and Serbia. *Informatica Economica*, 26(3), 50-63. DOI: 10.24818/issn14531305/26.3.2022.05
- [13] R. Lukic. (2023). Measurement and analysis of the information performance of companies in the European Union and Serbia based on the fuzzy LMAW and MARCOS methods. *Informatica Economica*, 27(1), 17 31. DOI: 10.24818/issn14531305/27.1.2023.02
- [14] D. Pamučar, M. Žižović, S. Biswas, D. Božanić. (2021). A new logarithm methodology of additive weights (LMAW) for multi-criteria decisionmaking: Application in logistics. *Facta Univ. Sir. Mech. Eng.*, 2021, 19, 361–380.

https://doi.org/10.22190/FUME21021403 1P

- [15] A. Puška, D. Božanić, M. Nedeljković, M. Janošević. (2022). Green Supplier Selection in an Uncertain Environment in Agriculture Using a Hybrid MCDM Model: Z-Numbers–Fuzzy LMAW– Fuzzy CRADIS Model. Axioms, 11, 427. https://doi.org/10.3390/ axioms11090427
- [16] A.U. Rehman, S. Bashir, A. Mahmood, H. Karim, and Z. Nawaz. (2022). Does eshopping service quality enhance customers' e-shopping adoption? An extended perspective of unified theory of acceptance and use of technology. PLoS e0263652. ONE. 17(2). https://doi.org/10.1371/journal.pone.0263 652
- [17] Ž. Stević, D. Pamučar, A. Puška, and P. Chatterjee. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise solution (MARCOS). *Computers & Industrial Engineering*, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231
- [18] Ž. Stević, N.A. Brković. (2020). Novel Integrated FUCOM-MARCOS Model for Evaluation of Human Resources in a Transport Company. *Logistics*, 4, 4. https://doi.org/10.3390/logistics4010004
- [19] D. Tolstoy, E.R. Nordman, and U. Wu.
 (2022). The indirect effect of online marketing capabilities on the international performance of e-commerce SMEs. *International Business Review*, 31(3), 101946. https://doi.org/10.1016/j.ibusrev.2021.10

https://doi.org/10.1016/j.ibusrev.2021.10 1946

[20] R.R. Yager, (2009). He generalized Bonferroni mean operators for multicriteria aggregation. *International Journal* of Approximate Reasoning, 50(8), 1279-1286.

https://doi.org/10.1016/j.ijar.2009.06.004

Radojko Lukic, PhD, full professor at the Faculty of Economics in Belgrade, where he graduated, master's and doctorate. He teaches the courses Accounting of trading companies, Accounting in banking and insurance and Special accounting at basic academic studies, as well as at several courses at master's studies (Organization of accounting information systems, Auditing in banks and Accounting for insurance companies). He teaches Cost Management in doctoral studies. He has published several scientific and

professional works (books, reports, articles, etc.) in the field of accounting and financial management in the service sector. He is the co-author of several studies